#!/usr/bin/env python3 # -*- coding: utf-8 -*- import bioblend import bioblend.galaxy.objects import argparse import os import logging import sys import json import time import utilities import speciesData from bioblend.galaxy.objects import GalaxyInstance from bioblend import galaxy """ gga_init.py Usage: $ python3 gga_init.py -i input_example.yml --config [config file] [OPTIONS] """ class RunWorkflow(speciesData.SpeciesData): """ Run a workflow into the galaxy instance's history of a given species This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow, provided the user creates their own workflow in a .ga format, and change the set_parameters function to have the correct parameters for their workflow (TODO: use a mapping file for parameters and the .ga file) """ def set_get_history(self): """ Create or set the working history to the current species one TODO move to utilities :return: """ try: histories = self.instance.histories.get_histories(name=str(self.full_name)) self.history_id = histories[0]["id"] logging.info("History for {0}: {1}".format(self.full_name, self.history_id)) except IndexError: logging.info("Creating history for %s" % self.full_name) self.instance.histories.create_history(name=str(self.full_name)) histories = self.instance.histories.get_histories(name=str(self.full_name)) self.history_id = histories[0]["id"] logging.info("History for {0}: {1}".format(self.full_name, self.history_id)) return self.history_id def get_instance_attributes(self): """ retrieves instance attributes: - working history ID - libraries ID (there should only be one library!) - datasets IDs :return: """ histories = self.instance.histories.get_histories(name=str(self.full_name)) self.history_id = histories[0]["id"] logging.debug("History ID: " + self.history_id) libraries = self.instance.libraries.get_libraries() # normally only one library library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library logging.debug("Library ID: " + self.history_id) instance_source_data_folders = self.instance.libraries.get_folders(library_id=library_id) # Access folders via their absolute path genome_folder = self.instance.libraries.get_folders(library_id=library_id, name="/genome/" + str(self.species_folder_name) + "/v" + str(self.genome_version)) annotation_folder = self.instance.libraries.get_folders(library_id=library_id, name="/annotation/" + str(self.species_folder_name) + "/OGS" + str(self.ogs_version)) # Get their IDs genome_folder_id = genome_folder[0]["id"] annotation_folder_id = annotation_folder[0]["id"] # Get the content of the folders genome_folder_content = self.instance.folders.show_folder(folder_id=genome_folder_id, contents=True) annotation_folder_content = self.instance.folders.show_folder(folder_id=annotation_folder_id, contents=True) # Find genome folder datasets genome_fasta_ldda_id = genome_folder_content["folder_contents"][0]["ldda_id"] annotation_gff_ldda_id, annotation_proteins_ldda_id, annotation_transcripts_ldda_id = None, None, None # Several dicts in the annotation folder content (one dict = one file) for k, v in annotation_folder_content.items(): if k == "folder_contents": for d in v: if "proteins" in d["name"]: annotation_proteins_ldda_id = d["ldda_id"] if "transcripts" in d["name"]: annotation_transcripts_ldda_id = d["ldda_id"] if ".gff" in d["name"]: annotation_gff_ldda_id = d["ldda_id"] self.datasets["genome_file"] = genome_fasta_ldda_id self.datasets["gff_file"] = annotation_gff_ldda_id self.datasets["proteins_file"] = annotation_proteins_ldda_id self.datasets["transcripts_file"] = annotation_transcripts_ldda_id return {"history_id": self.history_id, "library_id": library_id, "datasets": self.datasets} def connect_to_instance(self): """ Test the connection to the galaxy instance for the current organism Exit if we cannot connect to the instance """ self.instance = galaxy.GalaxyInstance(url=self.instance_url, email=self.config["galaxy_default_admin_email"], password=self.config["galaxy_default_admin_password"] ) logging.info("Connecting to the galaxy instance %s" % self.instance_url) try: self.instance.histories.get_histories() except bioblend.ConnectionError: logging.critical("Cannot connect to galaxy instance %s" % self.instance_url) sys.exit() else: logging.info("Successfully connected to galaxy instance %s" % self.instance_url) return 1 def prepare_history(self): """ Galaxy instance startup in preparation for importing datasets and running a workflow - Add organism and analyses into the chado database - Get any other existing organisms IDs before updating the galaxy instance --> separate Calling this function is mandatory to have a working galaxy instance history :return: """ self.connect_to_instance() histories = self.instance.histories.get_histories(name=str(self.full_name)) # Add organism (species) to chado logging.info("Adding organism to the instance's chado database") if self.common == "" or self.common is None: self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3", history_id=self.history_id, tool_inputs={"abbr": self.abbreviation, "genus": self.genus_uppercase, "species": self.chado_species_name, "common": self.abbreviation}) else: self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3", history_id=self.history_id, tool_inputs={"abbr": self.abbreviation, "genus": self.genus_uppercase, "species": self.chado_species_name, "common": self.common}) # Add OGS analysis to chado logging.info("Adding OGS analysis to the instance's chado database") self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3", history_id=self.history_id, tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version, "program": "Performed by Genoscope", "programversion": str(self.sex + " OGS" + self.ogs_version), "sourcename": "Genoscope", "date_executed": self.date}) # Add genome analysis to chado logging.info("Adding genome analysis to the instance's chado database") self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2", history_id=self.history_id, tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version, "program": "Performed by Genoscope", "programversion": str(self.sex + "genome v" + self.genome_version), "sourcename": "Genoscope", "date_executed": self.date}) # Also get the organism and analyses IDs self.get_organism_and_analyses_ids() logging.info("Finished initializing instance") def run_workflow(self, workflow_path, workflow_parameters, workflow_name, datamap): """ Run a workflow in galaxy Requires the .ga file to be loaded as a dictionary (optionally could be uploaded as a raw file) :param workflow_name: :param workflow_parameters: :param datamap: :return: """ logging.info("Importing workflow %s" % str(workflow_path)) workflow_ga_file = workflow_path with open(workflow_ga_file, 'r') as ga_in_file: # Store the decoded json dictionary workflow_dict = json.load(ga_in_file) self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict) workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name) workflow_id = workflow_attributes[0]["id"] # Most recently imported workflow show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id) try: logging.debug("Workflow ID: %s" % workflow_id) # logging.debug("Workflow information:\n%s" % str(show_workflow)) except Exception: logging.warning("Error retrieving workflow attributes for workflow %s" % workflow_name) self.instance.workflows.invoke_workflow(workflow_id=workflow_id, history_id=self.history_id, params=workflow_parameters, inputs=datamap, inputs_by="", allow_tool_state_corrections=True) logging.info("Successfully imported and invoked workflow {0}, check your galaxy instance ({1}) for the jobs state".format(workflow_name, self.instance_url)) def get_invocation_report(self, workflow_name): """ Debugging method for workflows Get report of a workflow invocation (execution of a workflow in the instance via the API :param workflow_name: :return: """ workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name) workflow_id = workflow_attributes[1]["id"] # Most recently imported workflow print("Workflow ID: %s" % workflow_id) invocations = self.instance.workflows.get_invocations(workflow_id=workflow_id) print(invocations) invocation_id = invocations[0]["id"] invocation_report = self.instance.invocations.get_invocation_report(invocation_id=invocation_id) logging.debug(invocation_report) def import_datasets_into_history(self): """ Find datasets in a library, get their ID and import them into the current history if they are not already :return: """ # Instanciate the instance gio = GalaxyInstance(url=self.instance_url, email=self.config["galaxy_default_admin_email"], password=self.config["galaxy_default_admin_password"]) prj_lib = gio.libraries.get_previews(name="Project Data") library_id = prj_lib[0].id instance_source_data_folders = self.instance.libraries.get_folders(library_id=str(library_id)) folders_ids = {} current_folder_name = "" # Loop over the folders in the library and map folders names to their IDs for i in instance_source_data_folders: for k, v in i.items(): if k == "name": folders_ids[v] = 0 current_folder_name = v if k == "id": folders_ids[current_folder_name] = v # Iterating over the folders to find datasets and map datasets to their IDs logging.info("Datasets IDs: ") for k, v in folders_ids.items(): if k == "/genome": sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True) final_sub_folder_content = self.instance.folders.show_folder(folder_id=sub_folder_content["folder_contents"][0]["id"], contents=True) for k2, v2 in final_sub_folder_content.items(): for e in v2: if type(e) == dict: if e["name"].endswith(".fa"): self.datasets["genome_file"] = e["ldda_id"] logging.info("\t" + e["name"] + ": " + e["ldda_id"]) if k == "/annotation": sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True) final_sub_folder_content = self.instance.folders.show_folder(folder_id=sub_folder_content["folder_contents"][0]["id"], contents=True) for k2, v2 in final_sub_folder_content.items(): for e in v2: if type(e) == dict: # TODO: manage versions? (differentiate between the correct folders using self.config) if "transcripts" in e["name"]: self.datasets["transcripts_file"] = e["ldda_id"] logging.info("\t" + e["name"] + ": " + e["ldda_id"]) elif "proteins" in e["name"]: self.datasets["proteins_file"] = e["ldda_id"] logging.info("\t" + e["name"] + ": " + e["ldda_id"]) elif "gff" in e["name"]: self.datasets["gff_file"] = e["ldda_id"] logging.info("\t" + e["name"] + ": " + e["ldda_id"]) logging.info("Uploading datasets into history %s" % self.history_id) self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["genome_file"]) self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["gff_file"]) self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["transcripts_file"]) self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["proteins_file"]) _datasets = self.instance.datasets.get_datasets() with open(os.path.join(self.main_dir, "datasets_ids.json"), "w") as datasets_ids_outfile: datasets_ids_outfile.write(str(_datasets)) return {"history_id": self.history_id, "library_id": library_id, "datasets": self.datasets} def get_datasets_hda_ids(self): """ Get the hda IDs of the datasets imported into an history The most "recent" imports will be prioritized As some tools will not work using the input datasets ldda IDs To bypass this issue, we need to retrieve the datasets imported into an history using this method TODO: call every tool of workflows with hda datasets ids (clearer and more robust) :return: """ # List of all datasets in the instance (including outputs from jobs) # "limit" and "offset" options *may* be used to restrict search to specific datasets but since # there is no way to know which imported datasets are the correct ones depending on history content # it's not currently used history_datasets_li = self.instance.datasets.get_datasets() genome_dataset_hda_id, gff_dataset_hda_id, transcripts_dataset_hda_id, proteins_datasets_hda_id = None, None, None, None genome_dataset_hda_id = history_datasets_li[3]["id"] gff_dataset_hda_id = history_datasets_li[2]["id"] transcripts_dataset_hda_id = history_datasets_li[1]["id"] proteins_datasets_hda_id = history_datasets_li[0]["id"] for dataset_dict in history_datasets_li[0:3]: # Datasets imports should be the last jobs in history if the function calls are in correct order # If not, add the function call "get_datasets_hda_ids()" just after "import_datasets_into_history()" if dataset_dict["name"].endswith("proteins.fa"): proteins_datasets_hda_id = dataset_dict["id"] logging.debug("Proteins dataset hda ID: %s" % proteins_datasets_hda_id) elif dataset_dict["name"].endswith("transcripts-gff.fa"): transcripts_dataset_hda_id = dataset_dict["id"] logging.debug("Transcripts dataset hda ID: %s" % transcripts_dataset_hda_id) elif dataset_dict["name"].endswith(".gff"): gff_dataset_hda_id = dataset_dict["id"] logging.debug("gff dataset hda ID: %s" % gff_dataset_hda_id) else: genome_dataset_hda_id = dataset_dict["id"] logging.debug("Genome dataset hda id: %s" % genome_dataset_hda_id) # Return a dict made of the hda ids return{"genome_hda_id": genome_dataset_hda_id, "transcripts_hda_id": transcripts_dataset_hda_id, "proteins_hda_id": proteins_datasets_hda_id, "gff_hda_id": gff_dataset_hda_id} def get_organism_and_analyses_ids(self): """ Retrieve current organism ID and OGS and genome chado analyses IDs (needed to run some tools as Tripal/Chado doesn't accept organism/analyses names as valid inputs WARNING: It is mandatory to call this function before invoking a workflow :return: """ # Get the ID for the current organism in chado org = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3", history_id=self.history_id, tool_inputs={"abbr": self.abbreviation, "genus": self.genus_uppercase, "species": self.chado_species_name, "common": self.common}) time.sleep(3) # Run tool again (sometimes the tool doesn't return anything despite the organism already being in the db) org = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3", history_id=self.history_id, tool_inputs={"abbr": self.abbreviation, "genus": self.genus_uppercase, "species": self.chado_species_name, "common": self.common}) time.sleep(10) org_job_out = org["outputs"][0]["id"] org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out) try: org_output = json.loads(org_json_output)[0] self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools except IndexError: logging.debug("No organism matching " + self.full_name + " exists in the instance's chado database") # Get the ID for the OGS analysis in chado ogs_analysis = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3", history_id=self.history_id, tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version}) ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"] ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out) try: ogs_analysis_output = json.loads(ogs_analysis_json_output)[0] self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"]) except IndexError: logging.debug("no matching OGS analysis exists in the instance's chado database") # Get the ID for the genome analysis in chado genome_analysis = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3", history_id=self.history_id, tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version}) genome_analysis_job_out = genome_analysis["outputs"][0]["id"] genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out) try: genome_analysis_output = json.loads(genome_analysis_json_output)[0] self.genome_analysis_id = str(genome_analysis_output["analysis_id"]) except IndexError: logging.debug("no matching genome analysis exists in the instance's chado database") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction " "with galaxy instances for GGA" ", following the protocol @ " "http://gitlab.sb-roscoff.fr/abims/e-infra/gga") parser.add_argument("input", type=str, help="Input file (yml)") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_true") parser.add_argument("--config", type=str, help="Config path, default to the 'config' file inside the script repository") parser.add_argument("--main-directory", type=str, help="Where the stack containers will be located, defaults to working directory") parser.add_argument("--workflow", "-w", type=str, help="Worfklow to run") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) logging.getLogger("urllib3").setLevel(logging.INFO) logging.getLogger("bioblend").setLevel(logging.INFO) # Parsing the config file if provided, using the default config otherwise if not args.config: args.config = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), "config") else: args.config = os.path.abspath(args.config) if not args.main_directory: args.main_directory = os.getcwd() else: args.main_directory = os.path.abspath(args.main_directory) sp_dict_list = utilities.parse_input(args.input) for sp_dict in sp_dict_list: # Creating an instance of the RunWorkflow object for the current organism run_workflow_for_current_organism = RunWorkflow(parameters_dictionary=sp_dict) # Checking if user specified a workflow to run if not args.workflow: logging.critical("No workflow specified, exiting") sys.exit() else: workflow = os.path.abspath(args.workflow) # Verifying the galaxy container is running if utilities.check_galaxy_state(genus_lowercase=run_workflow_for_current_organism.genus_lowercase, species=run_workflow_for_current_organism.species, script_dir=run_workflow_for_current_organism.script_dir): # Starting logging.info("run_workflow.py called for %s" % run_workflow_for_current_organism.full_name) # Setting some of the instance attributes run_workflow_for_current_organism.main_dir = args.main_directory run_workflow_for_current_organism.species_dir = os.path.join(run_workflow_for_current_organism.main_dir, run_workflow_for_current_organism.genus_species + "/") # Parse the config yaml file run_workflow_for_current_organism.config = utilities.parse_config(args.config) # Set the instance url attribute for env_variable, value in run_workflow_for_current_organism.config.items(): if env_variable == "hostname": run_workflow_for_current_organism.instance_url = "http://{0}:8888/sp/{1}/galaxy/".format( value, run_workflow_for_current_organism.genus_species) break else: run_workflow_for_current_organism.instance_url = "http://localhost:8888/sp/{0}_{1}/galaxy/".format( run_workflow_for_current_organism.genus_lowercase, run_workflow_for_current_organism.species) # TODO: Create distinct methods to call different pre-set workflows using CL arguments/config options (i.e load-chado, jbrowse, functional-annotation, orthology, ...) # If input workflow is Chado_load_Tripal_synchronize.ga if "Chado_load_Tripal_synchronize" in str(workflow): logging.info("Executing workflow 'Chado_load_Tripal_synchronize'") run_workflow_for_current_organism.connect_to_instance() run_workflow_for_current_organism.set_get_history() # run_workflow_for_current_organism.get_species_history_id() # Prepare the instance+history for the current organism (add organism and analyses in Chado) TODO: add argument "setup" # (although it should pose no problem as the "Chado add" refuses to duplicate an analysis/organism anyway) # run_workflow_for_current_organism.prepare_history() # Get the attributes of the instance and project data files run_workflow_for_current_organism.get_instance_attributes() run_workflow_for_current_organism.get_organism_and_analyses_ids() # Import datasets into history # TODO: it seems it is not required anymore since using "ldda" option for datasets in the workflow datamap doesn't need files from history run_workflow_for_current_organism.import_datasets_into_history() run_workflow_for_current_organism.get_datasets_hda_ids() # Explicit workflow parameter names GENOME_FASTA_FILE = "0" GFF_FILE = "1" PROTEINS_FASTA_FILE = "2" TRANSCRIPTS_FASTA_FILE = "3" LOAD_FASTA_IN_CHADO = "4" LOAD_GFF_IN_CHADO = "5" SYNC_ORGANISM_INTO_TRIPAL = "6" SYNC_GENOME_ANALYSIS_INTO_TRIPAL = "7" SYNC_OGS_ANALYSIS_INTO_TRIPAL = "8" SYNC_FEATURES_INTO_TRIPAL = "9" workflow_parameters = {} workflow_parameters[GENOME_FASTA_FILE] = {} workflow_parameters[GFF_FILE] = {} workflow_parameters[PROTEINS_FASTA_FILE] = {} workflow_parameters[TRANSCRIPTS_FASTA_FILE] = {} workflow_parameters[LOAD_FASTA_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id, "analysis_id": run_workflow_for_current_organism.genome_analysis_id, "do_update": "true"} # Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado # WARNING: It is safer to never update it and just change the genome/ogs versions in the config workflow_parameters[LOAD_GFF_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id, "analysis_id": run_workflow_for_current_organism.ogs_analysis_id} workflow_parameters[SYNC_ORGANISM_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id} workflow_parameters[SYNC_GENOME_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.ogs_analysis_id} workflow_parameters[SYNC_OGS_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.genome_analysis_id} workflow_parameters[SYNC_FEATURES_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id} # Datamap for input datasets - dataset source (type): ldda (LibraryDatasetDatasetAssociation) run_workflow_for_current_organism.datamap = {} run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["genome_file"]} run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["gff_file"]} run_workflow_for_current_organism.datamap[PROTEINS_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["proteins_file"]} run_workflow_for_current_organism.datamap[TRANSCRIPTS_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["transcripts_file"]} run_workflow_for_current_organism.datamap = {} run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["genome_file"]} run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets[ "gff_file"]} # Run the Chado load Tripal sync workflow with the parameters set above run_workflow_for_current_organism.run_workflow(workflow_path=workflow, workflow_parameters=workflow_parameters, datamap=run_workflow_for_current_organism.datamap, workflow_name="Chado load Tripal synchronize") # Jbrowse creation workflow elif "Jbrowse" in str(workflow): logging.info("Executing workflow 'Jbrowse'") run_workflow_for_current_organism.connect_to_instance() run_workflow_for_current_organism.set_get_history() run_workflow_for_current_organism.get_instance_attributes() run_workflow_for_current_organism.get_organism_and_analyses_ids() run_workflow_for_current_organism.import_datasets_into_history() hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids() # Note: always call this function AFTER calling "import_datasets_into_history()" # Debugging # run_workflow_for_current_organism.get_invocation_report(workflow_name="Jbrowse") GENOME_FASTA_FILE = "0" GFF_FILE = "1" ADD_JBROWSE = "2" ADD_ORGANISM_TO_JBROWSE = "3" workflow_parameters = {} workflow_parameters[GENOME_FASTA_FILE] = {} workflow_parameters[GFF_FILE] = {} # Jbrowse custom feature url workflow_parameters[ADD_JBROWSE] = {"jb_menu": {"menu_url": "http://{hostname}:{port}/sp/{genus_sp}/feature/{Genus}/{species}/{id}".format(hostname=run_workflow_for_current_organism.config["hostname"], port=run_workflow_for_current_organism.config["http_port"], genus_sp=run_workflow_for_current_organism.genus_species, Genus=run_workflow_for_current_organism.genus_uppercase, species=run_workflow_for_current_organism.species, id="id")}} # Organism to add to the Jbrowse "container" (consists of a name and an id, not tied to the galaxy instance or chado/tripal names and ids) workflow_parameters[ADD_ORGANISM_TO_JBROWSE] = {"name": [{"name": run_workflow_for_current_organism.full_name, "unique_id": run_workflow_for_current_organism.abbreviation}]} run_workflow_for_current_organism.datamap = {} run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id": hda_ids["genome_hda_id"]} run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda", "id": hda_ids["gff_hda_id"]} # Run the jbrowse creation workflow run_workflow_for_current_organism.run_workflow(workflow_path=workflow, workflow_parameters=workflow_parameters, datamap=run_workflow_for_current_organism.datamap, workflow_name="Jbrowse") else: logging.critical("The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.full_name) sys.exit()