#!/usr/bin/python # -*- coding: utf-8 -*- import bioblend import bioblend.galaxy.objects from bioblend import galaxy import argparse import os import subprocess import logging import sys import yaml import re from gga_autoload.gga_load_data import metadata_generator """ deploy_stacks.py Usage: $ python3 deploy_stacks.py -i example.yml [OPTIONS] """ def parse_input(input_file): """ Parse the yml input file to extract data to create the SpeciesData objects Return a list of dictionaries. Each dictionary contains data tied to a species :param input_file: :return: """ parsed_sp_dict_list = [] if str(input_file).endswith("yml") or str(input_file).endswith("yaml"): logging.debug("Input format used: YAML") else: logging.critical("Error, please input a YAML file") sys.exit() with open(input_file, 'r') as stream: try: yaml_dict = yaml.safe_load(stream) for k, v in yaml_dict.items(): if k == "config": pass parsed_sp_dict_list.append(v) except yaml.YAMLError as exit_code: logging.critical(exit_code + " (YAML input file might be incorrect)") sys.exit() return parsed_sp_dict_list class RunWorkflow: """ Run a workflow into the galaxy instance's history of a given species """ def __init__(self, parameters_dictionary): self.parameters_dictionary = parameters_dictionary self.species = parameters_dictionary["description"]["species"] self.genus = parameters_dictionary["description"]["genus"] self.strain = parameters_dictionary["description"]["strain"] self.sex = parameters_dictionary["description"]["sex"] self.common = parameters_dictionary["description"]["common_name"] self.date = datetime.today().strftime("%Y-%m-%d") self.origin = parameters_dictionary["description"]["origin"] self.performed = parameters_dictionary["data"]["performed_by"] if parameters_dictionary["data"]["genome_version"] == "": self.genome_version = "1.0" else: self.genome_version = parameters_dictionary["data"]["genome_version"] if parameters_dictionary["data"]["ogs_version"] == "": self.ogs_version = "1.0" else: self.ogs_version = parameters_dictionary["data"]["ogs_version"] self.genus_lowercase = self.genus[0].lower() + self.genus[1:] self.genus_uppercase = self.genus[0].upper() + self.genus[1:] self.species_folder_name = "_".join([self.genus_lowercase, self.species, self.strain, self.sex]) self.full_name = " ".join([self.genus_uppercase, self.species, self.strain, self.sex]) self.abbreviation = " ".join([self.genus_lowercase[0], self.species, self.strain, self.sex]) self.genus_species = self.genus_lowercase + "_" + self.species self.instance_url = "http://scratchgmodv1:8888/sp/" + self.genus_lowercase + "_" + self.species + "/galaxy/" # Testing with localhost/scratchgmodv1 self.instance = None self.history_id = None self.library_id = None self.script_dir = os.path.dirname(os.path.realpath(sys.argv[0])) self.main_dir = None self.species_dir = None self.org_id = None self.genome_analysis_id = None self.ogs_analysis_id = None self.tool_panel = None self.datasets = dict() self.source_files = dict() self.workflow_name = None self.metadata = dict() self.api_key = "master" if parameters_dictionary["data"]["parent_directory"] == "" or parameters_dictionary["data"]["parent_directory"] == "/path/to/closest/parent/dir": self.source_data_dir = "/projet/sbr/phaeoexplorer/" # Testing path for phaeoexplorer data else: self.source_data_dir = parameters_dictionary["data"]["parent_directory"] # Directory/subdirectories where data files are located (fasta, gff, ...) self.do_update = False # Update the instance (in histories corresponding to the input) instead of creating a new one self.api_key = "master" # API key used to communicate with the galaxy instance. Cannot be used to do user-tied actions self.species_name_regex_litteral = "(?=\w*V)(?=\w*A)(?=\w*R)(?=\w*I)(?=\w*A)(?=\w*B)(?=\w*L)(?=\w*E)\w+" # Placeholder re def get_species_history_id(self): """ Set and return the current species history id in its galaxy instance :return: """ histories = self.instance.histories.get_histories(name=str(self.full_name)) self.history_id = histories[0]["id"] self.instance.histories.show_history(history_id=self.history_id) return self.history_id def create_species_history(self): histories = self.instance.histories.get_histories(name=str(self.full_name)) print("\n" + str(histories) + "\n" + self.full_name + "\n") if not histories: self.instance.histories.create_history(name="FOO") print("Created history!") def get_instance_attributes(self): """ retrieves instance attributes: - working history ID - libraries ID (there should only be one library!) - datasets IDs :return: """ histories = self.instance.histories.get_histories(name=str(self.full_name)) self.history_id = histories[0]["id"] logging.debug("history ID: " + self.history_id) libraries = self.instance.libraries.get_libraries() # normally only one library self.library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library logging.debug("library ID: " + self.history_id) instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id) folders_ids = {} current_folder_name = "" for i in instance_source_data_folders: for k, v in i.items(): if k == "name": folders_ids[v] = 0 current_folder_name = v if k == "id": folders_ids[current_folder_name] = v logging.info("Folders and datasets IDs: ") self.datasets = dict() for k, v in folders_ids.items(): logging.info("\t" + k + ": " + v) if k == "/genome": sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True) for k2, v2 in sub_folder_content.items(): for e in v2: if type(e) == dict: if e["name"].endswith(".fa"): self.datasets["genome_file"] = e["ldda_id"] logging.info("\t\t" + e["name"] + ": " + e["ldda_id"]) elif k == "/annotation/" + self.genus_species: sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True) for k2, v2 in sub_folder_content.items(): for e in v2: if type(e) == dict: # TODO: manage several files of the same type and manage versions if e["name"].endswith("transcripts-gff.fa"): self.datasets["transcripts_file"] = e["ldda_id"] logging.info("\t\t" + e["name"] + ": " + e["ldda_id"]) elif e["name"].endswith("proteins.fasta"): self.datasets["proteins_file"] = e["ldda_id"] logging.info("\t\t" + e["name"] + ": " + e["ldda_id"]) elif e["name"].endswith(".gff"): self.datasets["gff_file"] = e["ldda_id"] logging.info("\t\t" + e["name"] + ": " + e["ldda_id"]) elif e["name"].endswith("MALE"): self.datasets["gff_file"] = e["ldda_id"] logging.info("\t\t" + e["name"] + ": " + e["ldda_id"]) def init_instance(self): """ Galaxy instance startup in preparation for running workflows - remove Homo sapiens from the chado database. - add organism and analyses into the chado database --> separate - get any other existing organisms IDs before updating the galaxy instance --> separate TODO: move the library and analysis/data stuff to a separate function :return: """ self.connect_to_instance() self.get_species_history_id() histories = self.instance.histories.get_histories(name=str(self.full_name)) # Create the first history if not histories: self.instance.histories.create_history(name=str(self.full_name)) self.history_id = histories[0]["id"] logging.debug("history ID: " + self.history_id) # libraries = self.instance.libraries.get_libraries() # routine check: one library # self.library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library logging.debug("library ID: " + self.history_id) instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id) # Delete Homo sapiens from Chado database logging.debug("Getting 'Homo sapiens' ID in instance's chado database") get_sapiens_id_job = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.2", history_id=self.history_id, tool_inputs={"genus": "Homo", "species": "sapiens"}) get_sapiens_id_job_output = get_sapiens_id_job["outputs"][0]["id"] get_sapiens_id_json_output = self.instance.datasets.download_dataset(dataset_id=get_sapiens_id_job_output) try: logging.debug("Deleting Homo 'sapiens' in the instance's chado database") get_sapiens_id_final_output = json.loads(get_sapiens_id_json_output)[0] sapiens_id = str( get_sapiens_id_final_output["organism_id"]) # needs to be str to be recognized by the chado tool self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_delete_organisms/organism_delete_organisms/2.3.2", history_id=self.history_id, tool_inputs={"organism": str(sapiens_id)}) except bioblend.ConnectionError: logging.debug("Homo sapiens isn't in the instance's chado database") except IndexError: logging.debug("Homo sapiens isn't in the instance's chado database") pass # TODO: the following actions should be done in a separate function (in case if the user wants to do everything him/herself -- for EOSC) # Add organism (species) to chado logging.info("Adding organism to the instance's chado database") self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.2", history_id=self.history_id, tool_inputs={"abbr": self.abbreviation, "genus": self.genus, "species": self.species, "common": self.common}) # Add OGS analysis to chado logging.info("Adding OGS analysis to the instance's chado database") self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2", history_id=self.history_id, tool_inputs={"name": self.genus + " " + self.species + " OGS" + self.ogs_version, "program": "Performed by Genoscope", "programversion": str("OGS" + self.ogs_version), "sourcename": "Genoscope", "date_executed": self.date}) # Add genome analysis to chado logging.info("Adding genome analysis to the instance's chado database") self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2", history_id=self.history_id, tool_inputs={"name": self.genus + " " + self.species + " genome v" + self.genome_version, "program": "Performed by Genoscope", "programversion": str("genome v" + self.genome_version), "sourcename": "Genoscope", "date_executed": self.date}) self.get_organism_and_analyses_ids() logging.info("Finished initializing instance") def run_workflow(self, workflow_name, workflow_parameters, datamap): """ Run the "main" workflow in the galaxy instance - import data to library - load fasta and gff - sync with tripal - add jbrowse + organism - fill in the tripal views TODO: map tool name to step id :param workflow_name: :param workflow_parameters: :param datamap: :return: """ logging.debug("running workflow: " + str(workflow_name)) workflow_ga_file = self.main_dir + "Galaxy-Workflow-" + workflow_name + ".ga" if self.strain != "": custom_ga_file = "_".join([self.genus, self.species, self.strain]) + "_workflow.ga" custom_ga_file_path = os.path.abspath(custom_ga_file) else: custom_ga_file = "_".join([self.genus, self.species]) + "_workflow.ga" custom_ga_file_path = os.path.abspath(custom_ga_file) with open(workflow_ga_file, 'r') as ga_in_file: workflow = str(ga_in_file.readlines()) # ugly fix for the jbrowse parameters workflow = workflow.replace('{\\\\\\\\\\\\"unique_id\\\\\\\\\\\\": \\\\\\\\\\\\"UNIQUE_ID\\\\\\\\\\\\"}', str('{\\\\\\\\\\\\"unique_id\\\\\\\\\\\\": \\\\\\\\\\\\"' + self.genus + " " + self.species) + '\\\\\\\\\\\\"') workflow = workflow.replace('\\\\\\\\\\\\"name\\\\\\\\\\\\": \\\\\\\\\\\\"NAME\\\\\\\\\\\\"', str('\\\\\\\\\\\\"name\\\\\\\\\\\\": \\\\\\\\\\\\"' + self.genus.lower()[0] + self.species) + '\\\\\\\\\\\\"') workflow = workflow.replace("\\\\", "\\") # to restore the correct amount of backslashes in the workflow string before import # test workflow = workflow.replace('http://localhost/sp/genus_species/feature/Genus/species/mRNA/{id}', "http://localhost/sp/" + self.genus_lowercase+ "_" + self.species + "/feature/" + self.genus + "/mRNA/{id}") # production # workflow = workflow.replace('http://localhost/sp/genus_species/feature/Genus/species/mRNA/{id}', # "http://abims--gga.sb-roscoff.fr/sp/" + self.genus_lowercase + "_" + self.species + "/feature/" + self.genus + "/mRNA/{id}") workflow = workflow[2:-2] # if the line under doesn't output a correct json # workflow = workflow[:-2] # if the line above doesn't output a correct json workflow_dict = json.loads(workflow) self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict) self.workflow_name = workflow_name workflow_attributes = self.instance.workflows.get_workflows(name=self.workflow_name) workflow_id = workflow_attributes[0]["id"] show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id) logging.debug("Workflow ID: " + workflow_id) logging.debug("Inputs:") logging.debug(show_workflow["Inputs"]) self.instance.workflows.invoke_workflow(workflow_id=workflow_id, history_id=self.history_id, params=workflow_parameters, inputs=datamap, inputs_by="") self.instance.workflows.delete_workflow(workflow_id=workflow_id) def get_organism_and_analyses_ids(self): """ Retrieve current organism ID and OGS and genome chado analyses IDs (needed to run some tools as Tripal/Chado doesn't accept organism/analyses names as valid inputs :return: """ # Get the ID for the current organism in chado org = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.2", history_id=self.history_id, tool_inputs={"genus": self.genus, "species": self.species}) org_job_out = org["outputs"][0]["id"] org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out) try: org_output = json.loads(org_json_output)[0] self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools except IndexError: logging.debug("no organism matching " + self.full_name + " exists in the instance's chado database") # Get the ID for the OGS analysis in chado ogs_analysis = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.2", history_id=self.history_id, tool_inputs={"name": self.genus + " " + self.species + " OGS" + self.ogs_version}) ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"] ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out) try: ogs_analysis_output = json.loads(ogs_analysis_json_output)[0] self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"]) except IndexError: logging.debug("no matching OGS analysis exists in the instance's chado database") # Get the ID for the genome analysis in chado genome_analysis = self.instance.tools.run_tool( tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.2", history_id=self.history_id, tool_inputs={"name": self.genus + " " + self.species + " genome v" + self.genome_version}) genome_analysis_job_out = genome_analysis["outputs"][0]["id"] genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out) try: genome_analysis_output = json.loads(genome_analysis_json_output)[0] self.genome_analysis_id = str(genome_analysis_output["analysis_id"]) except IndexError: logging.debug("no matching genome analysis exists in the instance's chado database") def connect_to_instance(self): """ TODO: move in init/access TODO: password Test the connection to the galaxy instance for the current organism Exit if it cannot connect to the instance """ self.instance = galaxy.GalaxyInstance(url=self.instance_url, email="gga@sb-roscoff.fr", password="password", verify=False) logging.info("Connecting to the galaxy instance ...") try: self.instance.histories.get_histories() self.tool_panel = self.instance.tools.get_tool_panel() except bioblend.ConnectionError: logging.critical("Cannot connect to galaxy instance @ " + self.instance_url) sys.exit() else: logging.info("Successfully connected to galaxy instance @ " + self.instance_url) self.instance.histories.create_history(name="FOO") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction " "with galaxy instances for GGA" ", following the protocol @ " "http://gitlab.sb-roscoff.fr/abims/e-infra/gga") parser.add_argument("input", type=str, help="Input file (yml)") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_false") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) logging.info("Start") sp_dict_list = parse_input(args.input) for sp_dict in sp_dict_list: o = RunWorkflow(parameters_dictionary=sp_dict) o.main_dir = os.path.abspath(args.dir) if args.init_instance: logging.info(" Initializing the galaxy instance") o.init_instance() o.get_instance_attributes() # metadata[genus_species_strain_sex]["initialized"] = True if args.load_data: logging.info("Loading data into galaxy") # o.load_data() # metadata[genus_species_strain_sex]["data_loaded_in_instance"] = True if args.run_main: logging.info("Running main workflow") o.get_organism_and_analyses_ids() workflow_parameters = dict() workflow_parameters["0"] = {} workflow_parameters["1"] = {} workflow_parameters["2"] = {} workflow_parameters["3"] = {} workflow_parameters["4"] = {"organism": al.org_id, "analysis_id": al.genome_analysis_id, "do_update": "true"} workflow_parameters["5"] = {"organism": al.org_id, "analysis_id": al.ogs_analysis_id} workflow_parameters["6"] = {"organism_id": al.org_id} workflow_parameters["7"] = {"analysis_id": al.ogs_analysis_id} workflow_parameters["8"] = {"analysis_id": al.genome_analysis_id} workflow_parameters["9"] = {"organism_id": al.org_id} workflow_parameters["10"] = {} workflow_parameters["11"] = {} o.datamap = dict() o.datamap["0"] = {"src": "hda", "id": al.datasets["genome_file"]} o.datamap["1"] = {"src": "hda", "id": al.datasets["gff_file"]} o.datamap["2"] = {"src": "hda", "id": al.datasets["proteins_file"]} o.datamap["3"] = {"src": "hda", "id": al.datasets["transcripts_file"]} o.run_workflow(workflow_name="main", workflow_parameters=workflow_parameters, datamap=al.datamap) # metadata[genus_species_strain_sex]["workflows_run"] = metadata[genus_species_strain_sex]["workflows_run"].append("main")