#!/usr/bin/python
# -*- coding: utf-8 -*-


import bioblend
import bioblend.galaxy.objects
from bioblend import galaxy
import argparse
import os
import subprocess
import logging
import sys
import yaml
import re
from gga_autoload.gga_load_data import metadata_generator

""" 
deploy_stacks.py

Usage: $ python3 deploy_stacks.py -i example.yml [OPTIONS]
"""


def parse_input(input_file):
    """
    Parse the yml input file to extract data to create the SpeciesData objects
    Return a list of dictionaries. Each dictionary contains data tied to a species

    :param input_file:
    :return:
    """

    parsed_sp_dict_list = []

    if str(input_file).endswith("yml") or str(input_file).endswith("yaml"):
        logging.debug("Input format used: YAML")
    else:
        logging.critical("Error, please input a YAML file")
        sys.exit()
    with open(input_file, 'r') as stream:
        try:
            yaml_dict = yaml.safe_load(stream)
            for k, v in yaml_dict.items():
                if k == "config":
                    pass
                parsed_sp_dict_list.append(v)
        except yaml.YAMLError as exit_code:
            logging.critical(exit_code + " (YAML input file might be incorrect)")
            sys.exit()
    return parsed_sp_dict_list


class RunWorkflow:
    """
    Run a workflow into the galaxy instance's history of a given species

    """

    def __init__(self, parameters_dictionary):
        self.parameters_dictionary = parameters_dictionary
        self.species = parameters_dictionary["description"]["species"]
        self.genus = parameters_dictionary["description"]["genus"]
        self.strain = parameters_dictionary["description"]["strain"]
        self.sex = parameters_dictionary["description"]["sex"]
        self.common = parameters_dictionary["description"]["common_name"]
        self.date = datetime.today().strftime("%Y-%m-%d")
        self.origin = parameters_dictionary["description"]["origin"]
        self.performed = parameters_dictionary["data"]["performed_by"]
        if parameters_dictionary["data"]["genome_version"] == "":
            self.genome_version = "1.0"
        else:
            self.genome_version = parameters_dictionary["data"]["genome_version"]
        if parameters_dictionary["data"]["ogs_version"] == "":
            self.ogs_version = "1.0"
        else:
            self.ogs_version = parameters_dictionary["data"]["ogs_version"]
        self.genus_lowercase = self.genus[0].lower() + self.genus[1:]
        self.genus_uppercase = self.genus[0].upper() + self.genus[1:]
        self.species_folder_name = "_".join([self.genus_lowercase, self.species, self.strain, self.sex])
        self.full_name = " ".join([self.genus_uppercase, self.species, self.strain, self.sex])
        self.abbreviation = " ".join([self.genus_lowercase[0], self.species, self.strain, self.sex])
        self.genus_species = self.genus_lowercase + "_" + self.species
        self.instance_url = "http://scratchgmodv1:8888/sp/" + self.genus_lowercase + "_" + self.species + "/galaxy/"
        # Testing with localhost/scratchgmodv1
        self.instance = None
        self.history_id = None
        self.library_id = None
        self.script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))
        self.main_dir = None
        self.species_dir = None
        self.org_id = None
        self.genome_analysis_id = None
        self.ogs_analysis_id = None
        self.tool_panel = None
        self.datasets = dict()
        self.source_files = dict()
        self.workflow_name = None
        self.metadata = dict()
        self.api_key = "master"
        if parameters_dictionary["data"]["parent_directory"] == "" or parameters_dictionary["data"]["parent_directory"] == "/path/to/closest/parent/dir":
            self.source_data_dir = "/projet/sbr/phaeoexplorer/"  # Testing path for phaeoexplorer data
        else:
            self.source_data_dir = parameters_dictionary["data"]["parent_directory"]
        # Directory/subdirectories where data files are located (fasta, gff, ...)
        self.do_update = False
        # Update the instance (in histories corresponding to the input) instead of creating a new one
        self.api_key = "master"
        # API key used to communicate with the galaxy instance. Cannot be used to do user-tied actions
        self.species_name_regex_litteral = "(?=\w*V)(?=\w*A)(?=\w*R)(?=\w*I)(?=\w*A)(?=\w*B)(?=\w*L)(?=\w*E)\w+"  # Placeholder re


    def get_species_history_id(self):
        """
        Set and return the current species history id in its galaxy instance

        :return:
        """
        histories = self.instance.histories.get_histories(name=str(self.full_name))
        self.history_id = histories[0]["id"]
        self.instance.histories.show_history(history_id=self.history_id)

        return self.history_id


    def create_species_history(self):
        histories = self.instance.histories.get_histories(name=str(self.full_name))
        print("\n" + str(histories) + "\n" + self.full_name + "\n")
        if not histories:
            self.instance.histories.create_history(name="FOO")
            print("Created history!")


    def get_instance_attributes(self):
        """
        retrieves instance attributes:
        - working history ID
        - libraries ID (there should only be one library!)
        - datasets IDs

        :return:
        """
        histories = self.instance.histories.get_histories(name=str(self.full_name))
        self.history_id = histories[0]["id"]
        logging.debug("history ID: " + self.history_id)
        libraries = self.instance.libraries.get_libraries()  # normally only one library
        self.library_id = self.instance.libraries.get_libraries()[0]["id"]  # project data folder/library
        logging.debug("library ID: " + self.history_id)
        instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id)

        folders_ids = {}
        current_folder_name = ""
        for i in instance_source_data_folders:
            for k, v in i.items():
                if k == "name":
                    folders_ids[v] = 0
                    current_folder_name = v
                if k == "id":
                    folders_ids[current_folder_name] = v
        logging.info("Folders and datasets IDs: ")
        self.datasets = dict()
        for k, v in folders_ids.items():
            logging.info("\t" + k + ": " + v)
            if k == "/genome":
                sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
                for k2, v2 in sub_folder_content.items():
                    for e in v2:
                        if type(e) == dict:
                            if e["name"].endswith(".fa"):
                                self.datasets["genome_file"] = e["ldda_id"]
                                logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
            elif k == "/annotation/" + self.genus_species:
                sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
                for k2, v2 in sub_folder_content.items():
                    for e in v2:
                        if type(e) == dict:
                            # TODO: manage several files of the same type and manage versions
                            if e["name"].endswith("transcripts-gff.fa"):
                                self.datasets["transcripts_file"] = e["ldda_id"]
                                logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
                            elif e["name"].endswith("proteins.fasta"):
                                self.datasets["proteins_file"] = e["ldda_id"]
                                logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
                            elif e["name"].endswith(".gff"):
                                self.datasets["gff_file"] = e["ldda_id"]
                                logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
                            elif e["name"].endswith("MALE"):
                                self.datasets["gff_file"] = e["ldda_id"]
                                logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])


    def init_instance(self):
        """
        Galaxy instance startup in preparation for running workflows
        - remove Homo sapiens from the chado database.
        - add organism and analyses into the chado database --> separate
        - get any other existing organisms IDs before updating the galaxy instance --> separate

        TODO: move the library and analysis/data stuff to a separate function
        :return:
        """

        self.connect_to_instance()
        self.get_species_history_id()
        histories = self.instance.histories.get_histories(name=str(self.full_name))
        # Create the first history
        if not histories:
            self.instance.histories.create_history(name=str(self.full_name))
        self.history_id = histories[0]["id"]
        logging.debug("history ID: " + self.history_id)
        # libraries = self.instance.libraries.get_libraries()  # routine check: one library
        # self.library_id = self.instance.libraries.get_libraries()[0]["id"]  # project data folder/library
        logging.debug("library ID: " + self.history_id)
        instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id)

        # Delete Homo sapiens from Chado database
        logging.debug("Getting 'Homo sapiens' ID in instance's chado database")
        get_sapiens_id_job = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.2",
            history_id=self.history_id,
            tool_inputs={"genus": "Homo", "species": "sapiens"})
        get_sapiens_id_job_output = get_sapiens_id_job["outputs"][0]["id"]
        get_sapiens_id_json_output = self.instance.datasets.download_dataset(dataset_id=get_sapiens_id_job_output)
        try:
            logging.debug("Deleting Homo 'sapiens' in the instance's chado database")
            get_sapiens_id_final_output = json.loads(get_sapiens_id_json_output)[0]
            sapiens_id = str(
                get_sapiens_id_final_output["organism_id"])  # needs to be str to be recognized by the chado tool
            self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_delete_organisms/organism_delete_organisms/2.3.2",
                history_id=self.history_id,
                tool_inputs={"organism": str(sapiens_id)})
        except bioblend.ConnectionError:
            logging.debug("Homo sapiens isn't in the instance's chado database")
        except IndexError:
            logging.debug("Homo sapiens isn't in the instance's chado database")
            pass

        # TODO: the following actions should be done in a separate function (in case if the user wants to do everything him/herself -- for EOSC)
        # Add organism (species) to chado
        logging.info("Adding organism to the instance's chado database")
        self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.2",
            history_id=self.history_id,
            tool_inputs={"abbr": self.abbreviation,
                         "genus": self.genus,
                         "species": self.species,
                         "common": self.common})
        # Add OGS analysis to chado
        logging.info("Adding OGS analysis to the instance's chado database")
        self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2",
            history_id=self.history_id,
            tool_inputs={"name": self.genus + " " + self.species + " OGS" + self.ogs_version,
                         "program": "Performed by Genoscope",
                         "programversion": str("OGS" + self.ogs_version),
                         "sourcename": "Genoscope",
                         "date_executed": self.date})

        # Add genome analysis to chado
        logging.info("Adding genome analysis to the instance's chado database")
        self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2",
            history_id=self.history_id,
            tool_inputs={"name": self.genus + " " + self.species + " genome v" + self.genome_version,
                         "program": "Performed by Genoscope",
                         "programversion": str("genome v" + self.genome_version),
                         "sourcename": "Genoscope",
                         "date_executed": self.date})
        self.get_organism_and_analyses_ids()
        logging.info("Finished initializing instance")


    def run_workflow(self, workflow_name, workflow_parameters, datamap):
        """
        Run the "main" workflow in the galaxy instance
        - import data to library
        - load fasta and gff
        - sync with tripal
        - add jbrowse + organism
        - fill in the tripal views

        TODO: map tool name to step id
        :param workflow_name:
        :param workflow_parameters:
        :param datamap:
        :return:
        """

        logging.debug("running workflow: " + str(workflow_name))
        workflow_ga_file = self.main_dir + "Galaxy-Workflow-" + workflow_name + ".ga"
        if self.strain != "":
            custom_ga_file = "_".join([self.genus, self.species, self.strain]) + "_workflow.ga"
            custom_ga_file_path = os.path.abspath(custom_ga_file)
        else:
            custom_ga_file = "_".join([self.genus, self.species]) + "_workflow.ga"
            custom_ga_file_path = os.path.abspath(custom_ga_file)
        with open(workflow_ga_file, 'r') as ga_in_file:
            workflow = str(ga_in_file.readlines())
            # ugly fix for the jbrowse parameters
            workflow = workflow.replace('{\\\\\\\\\\\\"unique_id\\\\\\\\\\\\": \\\\\\\\\\\\"UNIQUE_ID\\\\\\\\\\\\"}',
                                        str('{\\\\\\\\\\\\"unique_id\\\\\\\\\\\\": \\\\\\\\\\\\"' + self.genus + " " + self.species) + '\\\\\\\\\\\\"')
            workflow = workflow.replace('\\\\\\\\\\\\"name\\\\\\\\\\\\": \\\\\\\\\\\\"NAME\\\\\\\\\\\\"',
                                        str('\\\\\\\\\\\\"name\\\\\\\\\\\\": \\\\\\\\\\\\"' + self.genus.lower()[0] + self.species) + '\\\\\\\\\\\\"')
            workflow = workflow.replace("\\\\", "\\")  # to restore the correct amount of backslashes in the workflow string before import
            # test
            workflow = workflow.replace('http://localhost/sp/genus_species/feature/Genus/species/mRNA/{id}',
                                        "http://localhost/sp/" + self.genus_lowercase+ "_" + self.species + "/feature/" + self.genus + "/mRNA/{id}")
            # production
            # workflow = workflow.replace('http://localhost/sp/genus_species/feature/Genus/species/mRNA/{id}',
            #                             "http://abims--gga.sb-roscoff.fr/sp/" + self.genus_lowercase + "_" + self.species + "/feature/" + self.genus + "/mRNA/{id}")
            workflow = workflow[2:-2]  # if the line under doesn't output a correct json
            # workflow = workflow[:-2]  # if the line above doesn't output a correct json

            workflow_dict = json.loads(workflow)

            self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
            self.workflow_name = workflow_name
            workflow_attributes = self.instance.workflows.get_workflows(name=self.workflow_name)
            workflow_id = workflow_attributes[0]["id"]
            show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)
            logging.debug("Workflow ID: " + workflow_id)

            logging.debug("Inputs:")
            logging.debug(show_workflow["Inputs"])
            self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
                                                    history_id=self.history_id,
                                                    params=workflow_parameters,
                                                    inputs=datamap,
                                                    inputs_by="")
            self.instance.workflows.delete_workflow(workflow_id=workflow_id)


    def get_organism_and_analyses_ids(self):
        """
        Retrieve current organism ID and OGS and genome chado analyses IDs (needed to run some tools as Tripal/Chado
        doesn't accept organism/analyses names as valid inputs

        :return:
        """
        # Get the ID for the current organism in chado
        org = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.2",
            history_id=self.history_id,
            tool_inputs={"genus": self.genus, "species": self.species})
        org_job_out = org["outputs"][0]["id"]
        org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
        try:
            org_output = json.loads(org_json_output)[0]
            self.org_id = str(org_output["organism_id"])  # id needs to be a str to be recognized by chado tools
        except IndexError:
            logging.debug("no organism matching " + self.full_name + " exists in the instance's chado database")

        # Get the ID for the OGS analysis in chado
        ogs_analysis = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.2",
            history_id=self.history_id,
            tool_inputs={"name": self.genus + " " + self.species + " OGS" + self.ogs_version})
        ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"]
        ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out)
        try:
            ogs_analysis_output = json.loads(ogs_analysis_json_output)[0]
            self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"])
        except IndexError:
            logging.debug("no matching OGS analysis exists in the instance's chado database")

        # Get the ID for the genome analysis in chado
        genome_analysis = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.2",
            history_id=self.history_id,
            tool_inputs={"name": self.genus + " " + self.species + " genome v" + self.genome_version})
        genome_analysis_job_out = genome_analysis["outputs"][0]["id"]
        genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out)
        try:
            genome_analysis_output = json.loads(genome_analysis_json_output)[0]
            self.genome_analysis_id = str(genome_analysis_output["analysis_id"])
        except IndexError:
            logging.debug("no matching genome analysis exists in the instance's chado database")


    def connect_to_instance(self):
        """
        TODO: move in init/access
        TODO: password
        Test the connection to the galaxy instance for the current organism
        Exit if it cannot connect to the instance
        """
        self.instance = galaxy.GalaxyInstance(url=self.instance_url, email="gga@sb-roscoff.fr", password="password",
                                              verify=False)
        logging.info("Connecting to the galaxy instance ...")
        try:
            self.instance.histories.get_histories()
            self.tool_panel = self.instance.tools.get_tool_panel()
        except bioblend.ConnectionError:
            logging.critical("Cannot connect to galaxy instance @ " + self.instance_url)
            sys.exit()
        else:
            logging.info("Successfully connected to galaxy instance @ " + self.instance_url)
        self.instance.histories.create_history(name="FOO")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction "
                                                 "with galaxy instances for GGA"
                                                 ", following the protocol @ "
                                                 "http://gitlab.sb-roscoff.fr/abims/e-infra/gga")

    parser.add_argument("input",
                        type=str,
                        help="Input file (yml)")

    parser.add_argument("-v", "--verbose",
                        help="Increase output verbosity",
                        action="store_false")

    args = parser.parse_args()

    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)

    logging.info("Start")
    sp_dict_list = parse_input(args.input)

    for sp_dict in sp_dict_list:
        o = RunWorkflow(parameters_dictionary=sp_dict)
        o.main_dir = os.path.abspath(args.dir)
        if args.init_instance:
            logging.info(" Initializing the galaxy instance")
            o.init_instance()
            o.get_instance_attributes()
            # metadata[genus_species_strain_sex]["initialized"] = True
        if args.load_data:
            logging.info("Loading data into galaxy")
            # o.load_data()
            # metadata[genus_species_strain_sex]["data_loaded_in_instance"] = True
        if args.run_main:
            logging.info("Running main workflow")
            o.get_organism_and_analyses_ids()
            workflow_parameters = dict()
            workflow_parameters["0"] = {}
            workflow_parameters["1"] = {}
            workflow_parameters["2"] = {}
            workflow_parameters["3"] = {}
            workflow_parameters["4"] = {"organism": al.org_id,
                                        "analysis_id": al.genome_analysis_id,
                                        "do_update": "true"}
            workflow_parameters["5"] = {"organism": al.org_id,
                                        "analysis_id": al.ogs_analysis_id}
            workflow_parameters["6"] = {"organism_id": al.org_id}
            workflow_parameters["7"] = {"analysis_id": al.ogs_analysis_id}
            workflow_parameters["8"] = {"analysis_id": al.genome_analysis_id}
            workflow_parameters["9"] = {"organism_id": al.org_id}
            workflow_parameters["10"] = {}
            workflow_parameters["11"] = {}

            o.datamap = dict()
            o.datamap["0"] = {"src": "hda", "id": al.datasets["genome_file"]}
            o.datamap["1"] = {"src": "hda", "id": al.datasets["gff_file"]}
            o.datamap["2"] = {"src": "hda", "id": al.datasets["proteins_file"]}
            o.datamap["3"] = {"src": "hda", "id": al.datasets["transcripts_file"]}

            o.run_workflow(workflow_name="main", workflow_parameters=workflow_parameters, datamap=al.datamap)
            # metadata[genus_species_strain_sex]["workflows_run"] = metadata[genus_species_strain_sex]["workflows_run"].append("main")