Skip to content
Snippets Groups Projects
gga_run_workflow_phaeo_jbrowse.py 33.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import bioblend.galaxy.objects
import argparse
import os
import logging
import sys
import json
import time

import utilities
import utilities_bioblend
import constants
import constants_phaeo
import runWorkflowPhaeo

class OrgWorkflowParamJbrowse(runWorkflowPhaeo.OrgWorkflowParam):

    def __init__(self, genus_uppercase, chado_species_name, full_name, species_folder_name,
                 org_id, history_id, instance, genome_analysis_id=None, ogs_analysis_id=None,
                 genome_hda_id=None, gff_hda_id=None, transcripts_hda_id=None, proteins_hda_id=None):
        self.genome_analysis_id = genome_analysis_id
        self.ogs_analysis_id = ogs_analysis_id
        self.genome_hda_id = genome_hda_id
        self.gff_hda_id = gff_hda_id
        self.transcripts_hda_id = transcripts_hda_id
        self.proteins_hda_id = proteins_hda_id
        super().__init__(genus_uppercase, chado_species_name, full_name, species_folder_name,
                 org_id, history_id, instance)

    def check_param(self):
        params = [self.genus_uppercase,
                  self.chado_species_name,
                  self.full_name,
                  self.species_folder_name,
                  self.org_id,
                  self.history_id,
                  self.instance,
                  self.genome_analysis_id,
                  self.ogs_analysis_id,
                  self.genome_hda_id,
                  self.gff_hda_id,
                  self.transcripts_hda_id,
                  self.proteins_hda_id]
        utilities_bioblend.check_wf_param(self.full_name, params)

class RunWorkflowJbrowse(runWorkflowPhaeo.RunWorkflow):
    """
    Run a workflow into the galaxy instance's history of a given species


    This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,
    provided the user creates their own workflow in a .ga format, and change the set_parameters function
    to have the correct parameters for their workflow

    """

    def __init__(self, parameters_dictionary):

        super().__init__(parameters_dictionary)

        self.chado_species_name = " ".join(utilities.filter_empty_not_empty_items(
            [self.species, self.strain, self.sex])["not_empty"])

        self.abbreviation = self.genus_uppercase[0] + ". " + self.chado_species_name

        self.common = self.name
        if not self.common_name is None and self.common_name != "":
            self.common = self.common_name

        self.genome_analysis_name = "genome v{0} of {1}".format(self.genome_version, self.full_name)
        self.genome_analysis_programversion = "genome v{0}".format(self.genome_version)
        self.genome_analysis_sourcename = self.full_name

        self.ogs_analysis_name = "OGS{0} of {1}".format(self.ogs_version, self.full_name)
        self.ogs_analysis_programversion = "OGS{0}".format(self.ogs_version)
        self.ogs_analysis_sourcename = self.full_name

        self.genome_hda_id = None
        self.gff_hda_id = None
        self.transcripts_hda_id = None
        self.proteins_hda_id = None

    def install_changesets_revisions_for_individual_tools(self):
        """
        This function is used to verify that installed tools called outside workflows have the correct versions and changesets
        If it finds versions don't match, will install the correct version + changeset in the instance
        Doesn't do anything if versions match

        :return:
        """

        logging.info("Validating installed individual tools versions and changesets")

        # Verify that the add_organism and add_analysis versions are correct in the instance
        # changeset for 2.3.4+galaxy0 has to be manually found because there is no way to get the wanted changeset of a non installed tool via bioblend
        # except for workflows (.ga) that already contain the changeset revisions inside the steps ids

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
                                                       version=constants_phaeo.GET_ORGANISMS_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.GET_ORGANISMS_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ANALYSES_TOOL_ID,
                                                       version=constants_phaeo.GET_ANALYSES_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.GET_ANALYSES_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
                                                       version=constants_phaeo.ADD_ORGANISM_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ADD_ORGANISM_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ANALYSIS_TOOL_ID,
                                                       version=constants_phaeo.ADD_ANALYSIS_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ADD_ANALYSIS_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ANALYSIS_SYNC_TOOL_ID,
                                                       version=constants_phaeo.ANALYSIS_SYNC_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ANALYSIS_SYNC_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
                                                       version=constants_phaeo.ORGANISM_SYNC_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ORGANISM_SYNC_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        logging.info("Success: individual tools versions and changesets validated")

    def add_organism_and_sync(self):

        get_organisms_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
            instance=self.instance,
            tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={},
            time_sleep=10
        )
        organisms_dict_list = json.loads(get_organisms_tool_dataset)  # Turn the dataset into a list for parsing

        org_id = None

        # Look up list of outputs (dictionaries)
        for org_dict in organisms_dict_list:
            if org_dict["genus"] == self.genus_uppercase and org_dict["species"] == self.chado_species_name:
                org_id = str(org_dict["organism_id"])  # id needs to be a str to be recognized by chado tools

        if org_id is None:
            add_organism_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
                instance=self.instance,
                tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.common})
            organism_dict = json.loads(add_organism_tool_dataset)
            org_id = str(organism_dict["organism_id"])  # id needs to be a str to be recognized by chado tools

        # Synchronize newly added organism in Tripal
        logging.info("Synchronizing organism %s in Tripal" % self.full_name)
        time.sleep(60)
        utilities_bioblend.run_tool(
            instance=self.instance,
            tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={"organism_id": org_id})

        return org_id

    def import_datasets_into_history(self):
        """
        Find datasets in a library, get their ID and import them into the current history if they are not already
        """

        genome_ldda_id = None
        transcripts_ldda_id = None
        proteins_ldda_id = None
        gff_ldda_id = None

        genome_hda_id = None
        gff_hda_id = None
        transcripts_hda_id = None
        proteins_hda_id = None

        folder_dict_list = self.instance.libraries.get_folders(library_id=str(self.library_id))

        folders_id_dict = {}

        # Loop over the folders in the library and map folders names to their IDs
        for folder_dict in folder_dict_list:
            folders_id_dict[folder_dict["name"]] = folder_dict["id"]

        # Iterating over the folders to find datasets and map datasets to their IDs
        for folder_name, folder_id in folders_id_dict.items():
            if folder_name == "/genome/{0}/v{1}".format(self.species_folder_name, self.genome_version):
                sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
                for value in sub_folder_content.values():
                    for e in value:
                        if type(e) == dict:
                            if e["name"].endswith(self.genome_filename):
                                genome_ldda_id = e["ldda_id"]

            if folder_name == "/annotation/{0}/OGS{1}".format(self.species_folder_name, self.ogs_version):
                sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
                for value in sub_folder_content.values():
                    for e in value:
                        if type(e) == dict:
                            ldda_name = e["name"]
                            ldda_id = e["ldda_id"]
                            if ldda_name.endswith(self.transcripts_filename):
                                transcripts_ldda_id = ldda_id
                            elif ldda_name.endswith(self.proteins_filename):
                                proteins_ldda_id = ldda_id
                            elif ldda_name.endswith(self.gff_filename):
                                gff_ldda_id = ldda_id

        hda_list = self.instance.datasets.get_datasets(self.history_id)
        # Finding datasets in history (matching datasets names)
        for hda in hda_list:
            hda_name = hda["name"]
            hda_id = hda["id"]
            if hda_name == self.genome_filename:
                genome_hda_id = hda_id
            if hda_name ==  self.gff_filename:
                gff_hda_id = hda_id
            if hda_name == self.transcripts_filename:
                transcripts_hda_id = hda_id
            if hda_name == self.proteins_filename :
                proteins_hda_id = hda_id

        # Import each dataset into history if it is not imported
        logging.debug("Uploading datasets into history %s" % self.history_id)

        if genome_hda_id is None:
            genome_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=genome_ldda_id)
            genome_hda_id = genome_dataset_upload["id"]
        if gff_hda_id is  None:
            gff_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=gff_ldda_id)
            gff_hda_id = gff_dataset_upload["id"]
        if proteins_hda_id is None:
            proteins_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=proteins_ldda_id)
            proteins_hda_id = proteins_dataset_upload["id"]
        if transcripts_hda_id is None:
            transcripts_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=transcripts_ldda_id)
            transcripts_hda_id = transcripts_dataset_upload["id"]

        self.genome_hda_id = genome_hda_id
        self.gff_hda_id = gff_hda_id
        self.transcripts_hda_id = transcripts_hda_id
        self.proteins_hda_id = proteins_hda_id

def prepare_history_and_get_wf_param(sp_dict_list, main_dir, config):

    all_org_wf_param_dict = {}
    for sp_dict in sp_dict_list:

        run_workflow_for_current_organism = RunWorkflowJbrowse(parameters_dictionary=sp_dict)

        # Verifying the galaxy container is running
        if not utilities_bioblend.check_galaxy_state(network_name=run_workflow_for_current_organism.genus_species,
                                                     script_dir=run_workflow_for_current_organism.script_dir):
            logging.critical(
                "The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.genus_species)
            sys.exit()

        else:

            # Setting some of the instance attributes
            run_workflow_for_current_organism.main_dir = main_dir

            run_workflow_for_current_organism.set_galaxy_instance(config)
            run_workflow_for_current_organism.set_history()
            run_workflow_for_current_organism.install_changesets_revisions_for_individual_tools()
            run_workflow_for_current_organism.import_datasets_into_history()

            analyses_dict_list = run_workflow_for_current_organism.get_analyses()

            org_id = run_workflow_for_current_organism.add_organism_and_sync()
            genome_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
                analyses_dict_list=analyses_dict_list,
                analysis_name=run_workflow_for_current_organism.genome_analysis_name,
                analysis_programversion=run_workflow_for_current_organism.genome_analysis_programversion,
                analysis_sourcename=run_workflow_for_current_organism.genome_analysis_sourcename
            )
            ogs_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
                analyses_dict_list=analyses_dict_list,
                analysis_name=run_workflow_for_current_organism.ogs_analysis_name,
                analysis_programversion=run_workflow_for_current_organism.ogs_analysis_programversion,
                analysis_sourcename=run_workflow_for_current_organism.ogs_analysis_sourcename
            )

            # Create the StrainWorkflowParam object holding all attributes needed for the workflow
            org_wf_param = OrgWorkflowParamJbrowse(
                genus_uppercase=run_workflow_for_current_organism.genus_uppercase,
                full_name=run_workflow_for_current_organism.full_name,
                species_folder_name=run_workflow_for_current_organism.species_folder_name,
                chado_species_name=run_workflow_for_current_organism.chado_species_name,
                org_id=org_id,
                genome_analysis_id=genome_analysis_id,
                ogs_analysis_id=ogs_analysis_id,
                genome_hda_id=run_workflow_for_current_organism.genome_hda_id,
                gff_hda_id=run_workflow_for_current_organism.gff_hda_id,
                transcripts_hda_id=run_workflow_for_current_organism.transcripts_hda_id,
                proteins_hda_id=run_workflow_for_current_organism.proteins_hda_id,
                history_id=run_workflow_for_current_organism.history_id,
                instance=run_workflow_for_current_organism.instance
            )
            org_wf_param.check_param()

            # Add the species dictionary to the complete dictionary
            # This dictionary contains every organism present in the input file
            # Its structure is the following:
            # {genus species: {strain1_sex1: {variables_key: variables_values}, strain1_sex2: {variables_key: variables_values}}}
            if not run_workflow_for_current_organism.genus_species in all_org_wf_param_dict.keys():
                all_org_wf_param_dict[run_workflow_for_current_organism.genus_species] = {
                    run_workflow_for_current_organism.strain_sex: org_wf_param}
            else:
                if not run_workflow_for_current_organism.strain_sex in all_org_wf_param_dict[
                    run_workflow_for_current_organism.genus_species].keys():
                    all_org_wf_param_dict[run_workflow_for_current_organism.genus_species][
                        run_workflow_for_current_organism.strain_sex] = org_wf_param
                else:
                    logging.error("Duplicate organism with 'genus_species' = '{0}' and 'strain_sex' = '{1}'".format(
                        run_workflow_for_current_organism.genus_species, run_workflow_for_current_organism.strain_sex))

    return all_org_wf_param_dict

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run Galaxy workflows, specific to Phaeoexplorer data")

    parser.add_argument("input",
                        type=str,
                        help="Input file (yml)")

    parser.add_argument("-v", "--verbose",
                        help="Increase output verbosity",
                        action="store_true")

    parser.add_argument("--config",
                        type=str,
                        help="Config path, default to the 'config' file inside the script repository")

    parser.add_argument("--main-directory",
                        type=str,
                        help="Where the stack containers will be located, defaults to working directory")

    args = parser.parse_args()

    bioblend_logger = logging.getLogger("bioblend")
    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
        bioblend_logger.setLevel(logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)
        bioblend_logger.setLevel(logging.INFO)

    # Parsing the config file if provided, using the default config otherwise
    if args.config:
        config_file = os.path.abspath(args.config)
    else:
        config_file = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), constants.DEFAULT_CONFIG)

    main_dir = None
    if not args.main_directory:
        main_dir = os.getcwd()
    else:
        main_dir = os.path.abspath(args.main_directory)

    config = utilities.parse_config(config_file)
    sp_dict_list = utilities.parse_input(args.input)
    script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))

    all_org_wf_param_dict = prepare_history_and_get_wf_param(
        sp_dict_list=sp_dict_list,
        main_dir=main_dir,
        config=config)

    for genus_species, strains in all_org_wf_param_dict.items():
        strains_list = list(strains.keys())
        strains_count = len(strains_list)

        if strains_count == 1:
            logging.info("Input species %s: 1 strain detected in input dictionary" % genus_species)
            strain_sex = list(strains.keys())[0]
            org_wf_param = strains[strain_sex]

            # Set workflow path (1 organism)
            workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_1_ORG_FILE)

            # Check if the versions of tools specified in the workflow are installed in galaxy
            utilities_bioblend.install_changesets_revisions_from_workflow(workflow_path=workflow_path, instance=org_wf_param.instance)

            # Set the workflow parameters (individual tools runtime parameters in the workflow)
            workflow_parameters = {}
            # Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_FASTA] = {
                "organism": org_wf_param.org_id,
                "analysis_id": org_wf_param.genome_analysis_id,
                "do_update": "true"}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_GFF] = {
                "organism": org_wf_param.org_id,
                "analysis_id": org_wf_param.ogs_analysis_id}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_FEATURE_SYNC] = {
                "organism_id": org_wf_param.org_id}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_POPULATE_VIEWS] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_INDEX] = {}

            # Set datamap (mapping of input files in the workflow)
            datamap = {}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {"src": "hda", "id": org_wf_param.genome_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {"src": "hda", "id": org_wf_param.gff_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {"src": "hda", "id": org_wf_param.proteins_hda_id}

            with open(workflow_path, 'r') as ga_in_file:

                # Store the decoded json dictionary
                workflow_dict = json.load(ga_in_file)
                workflow_name = workflow_dict["name"]

                # For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
                # as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
                # Scratchgmod test: need "http" (or "https"), the hostname (+ port)
                if constants.CONF_JBROWSE_MENU_URL not in config.keys():
                    # default
                    root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
                else:
                    root_url = config[constants.CONF_JBROWSE_MENU_URL]
                species_strain_sex = org_wf_param.chado_species_name.replace(" ", "-")
                jbrowse_menu_url = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                    root_url=root_url,
                    genus_sp=genus_species,
                    Genus=org_wf_param.genus_uppercase,
                    species_strain_sex=species_strain_sex,
                    id="{id}")
                # Replace values in the workflow dictionary
                workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"] = \
                    workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"]\
                    .replace("__MENU_URL_ORG__", jbrowse_menu_url)
                workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"] = \
                    workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"]\
                    .replace("__DISPLAY_NAME_ORG__", org_wf_param.full_name)\
                    .replace("__UNIQUE_ID_ORG__", org_wf_param.species_folder_name)

                # Import the workflow in galaxy as a dict
                org_wf_param.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

                # Get its attributes
                workflow_dict_list = org_wf_param.instance.workflows.get_workflows(name=workflow_name)
                # Then get its ID (required to invoke the workflow)
                workflow_id = workflow_dict_list[0]["id"]  # Index 0 is the most recently imported workflow (the one we want)
                logging.debug("Workflow ID: %s" % workflow_id)
                # Check if the workflow is found
                try:
                    show_workflow = org_wf_param.instance.workflows.show_workflow(workflow_id=workflow_id)
                except bioblend.ConnectionError:
                    logging.warning("Error finding workflow %s" % workflow_name)

                # Finally, invoke the workflow along with its datamap, parameters and the history in which to invoke it
                org_wf_param.instance.workflows.invoke_workflow(
                    workflow_id=workflow_id,
                    history_id=org_wf_param.history_id,
                    params=workflow_parameters,
                    inputs=datamap,
                    allow_tool_state_corrections=True)

                logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))

        if strains_count == 2:

            logging.info("Input organism %s: 2 species detected in input dictionary" % genus_species)
            strain_sex_org1 = strains_list[0]
            strain_sex_org2 = strains_list[1]
            sp_wf_param_org1 = strains[strain_sex_org1]
            sp_wf_param_org2 = strains[strain_sex_org2]

            # Set workflow path (2 organisms)
            workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_2_ORG_FILE)

            # Check if the versions of tools specified in the workflow are installed in galaxy
            utilities_bioblend.install_changesets_revisions_from_workflow(workflow_path=workflow_path, instance=sp_wf_param_org1.instance)

            # Set the workflow parameters (individual tools runtime parameters in the workflow)
            workflow_parameters = {}
            # Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG2] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG2] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG2] = {}
            # Organism 1
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_FASTA_ORG1] = {
                "organism": sp_wf_param_org1.org_id,
                "analysis_id": sp_wf_param_org1.genome_analysis_id,
                "do_update": "true"}
            # workflow_parameters[JBROWSE_ORG1] = {"jbrowse_menu_url": jbrowse_menu_url_org1}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JBROWSE_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_GFF_ORG1] = {
                "organism": sp_wf_param_org1.org_id,
                "analysis_id": sp_wf_param_org1.ogs_analysis_id}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_FEATURE_SYNC_ORG1] = {
                "organism_id": sp_wf_param_org1.org_id}
            # workflow_parameters[JBROWSE_CONTAINER] = {"organisms": [{"name": org1_full_name, "unique_id": org1_species_folder_name, }, {"name": org2_full_name, "unique_id": org2_species_folder_name}]}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER] = {}
            # Organism 2
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_FASTA_ORG2] = {
                "organism": sp_wf_param_org2.org_id,
                "analysis_id": sp_wf_param_org2.genome_analysis_id,
                "do_update": "true"}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_GFF_ORG2] = {
                "organism": sp_wf_param_org2.org_id,
                "analysis_id": sp_wf_param_org2.ogs_analysis_id}
            # workflow_parameters[JRBOWSE_ORG2] = {"jbrowse_menu_url": jbrowse_menu_url_org2}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JRBOWSE_ORG2] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_FEATURE_SYNC_ORG2] = {
                "organism_id": sp_wf_param_org2.org_id}
            # POPULATE + INDEX DATA
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_POPULATE_VIEWS] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_INDEX] = {}

            # Set datamap (mapping of input files in the workflow)
            datamap = {}
            # Organism 1
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG1] = {"src": "hda", "id": sp_wf_param_org1.genome_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG1] = {"src": "hda", "id": sp_wf_param_org1.gff_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG1] = {"src": "hda", "id": sp_wf_param_org1.proteins_hda_id}
            # Organism 2
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG2] = {"src": "hda", "id": sp_wf_param_org2.genome_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG2] = {"src": "hda", "id": sp_wf_param_org2.gff_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG2] = {"src": "hda", "id": sp_wf_param_org2.proteins_hda_id}

            with open(workflow_path, 'r') as ga_in_file:

                # Store the decoded json dictionary
                workflow_dict = json.load(ga_in_file)
                workflow_name = workflow_dict["name"]

                # For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
                # as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
                # Scratchgmod test: need "http" (or "https"), the hostname (+ port)
                if constants.CONF_JBROWSE_MENU_URL not in config.keys():
                    # default
                    root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
                else:
                    root_url = config[constants.CONF_JBROWSE_MENU_URL]
                species_strain_sex_org1 = sp_wf_param_org1.chado_species_name.replace(" ", "-")
                species_strain_sex_org2 = sp_wf_param_org2.chado_species_name.replace(" ", "-")
                jbrowse_menu_url_org1 = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                    root_url=root_url,
                    genus_sp=genus_species,
                    Genus=sp_wf_param_org1.genus_uppercase,
                    species_strain_sex=species_strain_sex_org1,
                    id="{id}")
                jbrowse_menu_url_org2 = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                    root_url=root_url,
                    genus_sp=genus_species,
                    Genus=sp_wf_param_org2.genus_uppercase,
                    species_strain_sex=species_strain_sex_org2,
                    id="{id}")
                # Replace values in the workflow dictionary
                jbrowse_tool_state_org1 = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JBROWSE_ORG1]["tool_state"]
                jbrowse_tool_state_org1 = jbrowse_tool_state_org1.replace("__MENU_URL_ORG1__", jbrowse_menu_url_org1)
                jbrowse_tool_state_org2 = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JRBOWSE_ORG2]["tool_state"]
                jbrowse_tool_state_org2 = jbrowse_tool_state_org2.replace("__MENU_URL_ORG2__", jbrowse_menu_url_org2)
                # The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
                # in galaxy --> define a naming method for these workflows
                workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER]["tool_state"] = \
                    workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER]["tool_state"]\
                    .replace("__DISPLAY_NAME_ORG1__", sp_wf_param_org1.full_name)\
                    .replace("__UNIQUE_ID_ORG1__", sp_wf_param_org1.species_folder_name)\
                    .replace("__DISPLAY_NAME_ORG2__", sp_wf_param_org2.full_name)\
                    .replace("__UNIQUE_ID_ORG2__", sp_wf_param_org2.species_folder_name)

                # Import the workflow in galaxy as a dict
                sp_wf_param_org1.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

                # Get its attributes
                workflow_dict_list = sp_wf_param_org1.instance.workflows.get_workflows(name=workflow_name)
                # Then get its ID (required to invoke the workflow)
                workflow_id = workflow_dict_list[0]["id"]  # Index 0 is the most recently imported workflow (the one we want)
                logging.debug("Workflow ID: %s" % workflow_id)
                # Check if the workflow is found
                try:
                    show_workflow = sp_wf_param_org1.instance.workflows.show_workflow(workflow_id=workflow_id)
                except bioblend.ConnectionError:
                    logging.warning("Error finding workflow %s" % workflow_name)

                # Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it
                sp_wf_param_org1.instance.workflows.invoke_workflow(
                    workflow_id=workflow_id,
                    history_id=sp_wf_param_org1.history_id,
                    params=workflow_parameters,
                    inputs=datamap,
                    allow_tool_state_corrections=True)

                logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))