Newer
Older

Loraine Gueguen
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import bioblend.galaxy.objects
import argparse
import os
import logging
import sys
import json
import time
import utilities
import utilities_bioblend
import constants
import constants_phaeo
import runWorkflowPhaeo
class OrgWorkflowParamJbrowse(runWorkflowPhaeo.OrgWorkflowParam):
def __init__(self, genus_uppercase, chado_species_name, full_name, species_folder_name,
org_id, history_id, instance, genome_analysis_id=None, ogs_analysis_id=None,
genome_hda_id=None, gff_hda_id=None, transcripts_hda_id=None, proteins_hda_id=None):
self.genome_analysis_id = genome_analysis_id
self.ogs_analysis_id = ogs_analysis_id
self.genome_hda_id = genome_hda_id
self.gff_hda_id = gff_hda_id
self.transcripts_hda_id = transcripts_hda_id
self.proteins_hda_id = proteins_hda_id
super().__init__(genus_uppercase, chado_species_name, full_name, species_folder_name,
org_id, history_id, instance)
def check_param(self):
params = [self.genus_uppercase,
self.chado_species_name,
self.full_name,
self.species_folder_name,
self.org_id,
self.history_id,
self.instance,
self.genome_analysis_id,
self.ogs_analysis_id,
self.genome_hda_id,
self.gff_hda_id,
self.transcripts_hda_id,
self.proteins_hda_id]
utilities_bioblend.check_wf_param(self.full_name, params)
class RunWorkflowJbrowse(runWorkflowPhaeo.RunWorkflow):
"""
Run a workflow into the galaxy instance's history of a given species
This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,
provided the user creates their own workflow in a .ga format, and change the set_parameters function
to have the correct parameters for their workflow
"""
def __init__(self, parameters_dictionary):
super().__init__(parameters_dictionary)
self.chado_species_name = " ".join(utilities.filter_empty_not_empty_items(
[self.species, self.strain, self.sex])["not_empty"])
self.abbreviation = self.genus_uppercase[0] + ". " + self.chado_species_name
self.common = self.name
if not self.common_name is None and self.common_name != "":
self.common = self.common_name
self.genome_analysis_name = "genome v{0} of {1}".format(self.genome_version, self.full_name)
self.genome_analysis_programversion = "genome v{0}".format(self.genome_version)
self.genome_analysis_sourcename = self.full_name
self.ogs_analysis_name = "OGS{0} of {1}".format(self.ogs_version, self.full_name)
self.ogs_analysis_programversion = "OGS{0}".format(self.ogs_version)
self.ogs_analysis_sourcename = self.full_name
self.genome_hda_id = None
self.gff_hda_id = None
self.transcripts_hda_id = None
self.proteins_hda_id = None

Loraine Gueguen
committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
This function is used to verify that installed tools called outside workflows have the correct versions and changesets
If it finds versions don't match, will install the correct version + changeset in the instance
Doesn't do anything if versions match
:return:
"""
logging.info("Validating installed individual tools versions and changesets")
# Verify that the add_organism and add_analysis versions are correct in the instance
# changeset for 2.3.4+galaxy0 has to be manually found because there is no way to get the wanted changeset of a non installed tool via bioblend
# except for workflows (.ga) that already contain the changeset revisions inside the steps ids
utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
version=constants_phaeo.GET_ORGANISMS_TOOL_VERSION,
changeset_revision=constants_phaeo.GET_ORGANISMS_TOOL_CHANGESET_REVISION,
instance=self.instance)
utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ANALYSES_TOOL_ID,
version=constants_phaeo.GET_ANALYSES_TOOL_VERSION,
changeset_revision=constants_phaeo.GET_ANALYSES_TOOL_CHANGESET_REVISION,
instance=self.instance)
utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
version=constants_phaeo.ADD_ORGANISM_TOOL_VERSION,
changeset_revision=constants_phaeo.ADD_ORGANISM_TOOL_CHANGESET_REVISION,
instance=self.instance)
utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ANALYSIS_TOOL_ID,
version=constants_phaeo.ADD_ANALYSIS_TOOL_VERSION,
changeset_revision=constants_phaeo.ADD_ANALYSIS_TOOL_CHANGESET_REVISION,
instance=self.instance)
utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ANALYSIS_SYNC_TOOL_ID,
version=constants_phaeo.ANALYSIS_SYNC_TOOL_VERSION,
changeset_revision=constants_phaeo.ANALYSIS_SYNC_TOOL_CHANGESET_REVISION,
instance=self.instance)
utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
version=constants_phaeo.ORGANISM_SYNC_TOOL_VERSION,
changeset_revision=constants_phaeo.ORGANISM_SYNC_TOOL_CHANGESET_REVISION,
instance=self.instance)
logging.info("Success: individual tools versions and changesets validated")
def add_organism_and_sync(self):
get_organisms_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
instance=self.instance,
tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
history_id=self.history_id,
tool_inputs={},
time_sleep=10
)
organisms_dict_list = json.loads(get_organisms_tool_dataset) # Turn the dataset into a list for parsing
org_id = None
# Look up list of outputs (dictionaries)
for org_dict in organisms_dict_list:
if org_dict["genus"] == self.genus_uppercase and org_dict["species"] == self.chado_species_name:
org_id = str(org_dict["organism_id"]) # id needs to be a str to be recognized by chado tools
if org_id is None:
add_organism_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
instance=self.instance,
tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})
organism_dict = json.loads(add_organism_tool_dataset)
org_id = str(organism_dict["organism_id"]) # id needs to be a str to be recognized by chado tools
# Synchronize newly added organism in Tripal
logging.info("Synchronizing organism %s in Tripal" % self.full_name)
time.sleep(60)
utilities_bioblend.run_tool(
instance=self.instance,
tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
history_id=self.history_id,
tool_inputs={"organism_id": org_id})
return org_id
def import_datasets_into_history(self):
"""
Find datasets in a library, get their ID and import them into the current history if they are not already
"""
genome_ldda_id = None
transcripts_ldda_id = None
proteins_ldda_id = None
gff_ldda_id = None
genome_hda_id = None
gff_hda_id = None
transcripts_hda_id = None
proteins_hda_id = None
folder_dict_list = self.instance.libraries.get_folders(library_id=str(self.library_id))
folders_id_dict = {}
# Loop over the folders in the library and map folders names to their IDs
for folder_dict in folder_dict_list:
folders_id_dict[folder_dict["name"]] = folder_dict["id"]
# Iterating over the folders to find datasets and map datasets to their IDs
for folder_name, folder_id in folders_id_dict.items():
if folder_name == "/genome/{0}/v{1}".format(self.species_folder_name, self.genome_version):
sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
for value in sub_folder_content.values():
for e in value:
if type(e) == dict:
if e["name"].endswith(self.genome_filename):
genome_ldda_id = e["ldda_id"]
if folder_name == "/annotation/{0}/OGS{1}".format(self.species_folder_name, self.ogs_version):
sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
for value in sub_folder_content.values():
for e in value:
if type(e) == dict:
ldda_name = e["name"]
ldda_id = e["ldda_id"]
if ldda_name.endswith(self.transcripts_filename):
transcripts_ldda_id = ldda_id
elif ldda_name.endswith(self.proteins_filename):
proteins_ldda_id = ldda_id
elif ldda_name.endswith(self.gff_filename):
gff_ldda_id = ldda_id
hda_list = self.instance.datasets.get_datasets(self.history_id)
# Finding datasets in history (matching datasets names)
for hda in hda_list:
hda_name = hda["name"]
hda_id = hda["id"]
if hda_name == self.genome_filename:
genome_hda_id = hda_id
if hda_name == self.gff_filename:
gff_hda_id = hda_id
if hda_name == self.transcripts_filename:
transcripts_hda_id = hda_id
if hda_name == self.proteins_filename :
proteins_hda_id = hda_id
# Import each dataset into history if it is not imported
logging.debug("Uploading datasets into history %s" % self.history_id)
if genome_hda_id is None:
genome_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=genome_ldda_id)
genome_hda_id = genome_dataset_upload["id"]
if gff_hda_id is None:
gff_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=gff_ldda_id)
gff_hda_id = gff_dataset_upload["id"]
if proteins_hda_id is None:
proteins_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=proteins_ldda_id)
proteins_hda_id = proteins_dataset_upload["id"]
if transcripts_hda_id is None:
transcripts_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=transcripts_ldda_id)
transcripts_hda_id = transcripts_dataset_upload["id"]
self.genome_hda_id = genome_hda_id
self.gff_hda_id = gff_hda_id
self.transcripts_hda_id = transcripts_hda_id
self.proteins_hda_id = proteins_hda_id
def prepare_history_and_get_wf_param(sp_dict_list, main_dir, config):
all_org_wf_param_dict = {}
for sp_dict in sp_dict_list:
run_workflow_for_current_organism = RunWorkflowJbrowse(parameters_dictionary=sp_dict)
# Verifying the galaxy container is running
if not utilities_bioblend.check_galaxy_state(network_name=run_workflow_for_current_organism.genus_species,
script_dir=run_workflow_for_current_organism.script_dir):
logging.critical(
"The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.genus_species)
sys.exit()
else:
# Setting some of the instance attributes
run_workflow_for_current_organism.main_dir = main_dir
run_workflow_for_current_organism.set_galaxy_instance(config)
run_workflow_for_current_organism.set_history()
run_workflow_for_current_organism.install_individual_tools()

Loraine Gueguen
committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
run_workflow_for_current_organism.import_datasets_into_history()
analyses_dict_list = run_workflow_for_current_organism.get_analyses()
org_id = run_workflow_for_current_organism.add_organism_and_sync()
genome_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
analyses_dict_list=analyses_dict_list,
analysis_name=run_workflow_for_current_organism.genome_analysis_name,
analysis_programversion=run_workflow_for_current_organism.genome_analysis_programversion,
analysis_sourcename=run_workflow_for_current_organism.genome_analysis_sourcename
)
ogs_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
analyses_dict_list=analyses_dict_list,
analysis_name=run_workflow_for_current_organism.ogs_analysis_name,
analysis_programversion=run_workflow_for_current_organism.ogs_analysis_programversion,
analysis_sourcename=run_workflow_for_current_organism.ogs_analysis_sourcename
)
# Create the StrainWorkflowParam object holding all attributes needed for the workflow
org_wf_param = OrgWorkflowParamJbrowse(
genus_uppercase=run_workflow_for_current_organism.genus_uppercase,
full_name=run_workflow_for_current_organism.full_name,
species_folder_name=run_workflow_for_current_organism.species_folder_name,
chado_species_name=run_workflow_for_current_organism.chado_species_name,
org_id=org_id,
genome_analysis_id=genome_analysis_id,
ogs_analysis_id=ogs_analysis_id,
genome_hda_id=run_workflow_for_current_organism.genome_hda_id,
gff_hda_id=run_workflow_for_current_organism.gff_hda_id,
transcripts_hda_id=run_workflow_for_current_organism.transcripts_hda_id,
proteins_hda_id=run_workflow_for_current_organism.proteins_hda_id,
history_id=run_workflow_for_current_organism.history_id,
instance=run_workflow_for_current_organism.instance
)
org_wf_param.check_param()
# Add the species dictionary to the complete dictionary
# This dictionary contains every organism present in the input file
# Its structure is the following:
# {genus species: {strain1_sex1: {variables_key: variables_values}, strain1_sex2: {variables_key: variables_values}}}
if not run_workflow_for_current_organism.genus_species in all_org_wf_param_dict.keys():
all_org_wf_param_dict[run_workflow_for_current_organism.genus_species] = {
run_workflow_for_current_organism.strain_sex: org_wf_param}
else:
if not run_workflow_for_current_organism.strain_sex in all_org_wf_param_dict[
run_workflow_for_current_organism.genus_species].keys():
all_org_wf_param_dict[run_workflow_for_current_organism.genus_species][
run_workflow_for_current_organism.strain_sex] = org_wf_param
else:
logging.error("Duplicate organism with 'genus_species' = '{0}' and 'strain_sex' = '{1}'".format(
run_workflow_for_current_organism.genus_species, run_workflow_for_current_organism.strain_sex))
return all_org_wf_param_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run Galaxy workflows, specific to Phaeoexplorer data")
parser.add_argument("input",
type=str,
help="Input file (yml)")
parser.add_argument("-v", "--verbose",
help="Increase output verbosity",
action="store_true")
parser.add_argument("--config",
type=str,
help="Config path, default to the 'config' file inside the script repository")
parser.add_argument("--main-directory",
type=str,
help="Where the stack containers will be located, defaults to working directory")
args = parser.parse_args()
bioblend_logger = logging.getLogger("bioblend")
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
bioblend_logger.setLevel(logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
bioblend_logger.setLevel(logging.INFO)
# Parsing the config file if provided, using the default config otherwise
if args.config:
config_file = os.path.abspath(args.config)
else:
config_file = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), constants.DEFAULT_CONFIG)
main_dir = None
if not args.main_directory:
main_dir = os.getcwd()
else:
main_dir = os.path.abspath(args.main_directory)
config = utilities.parse_config(config_file)
sp_dict_list = utilities.parse_input(args.input)
script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))
all_org_wf_param_dict = prepare_history_and_get_wf_param(
sp_dict_list=sp_dict_list,
main_dir=main_dir,
config=config)
for genus_species, strains in all_org_wf_param_dict.items():
strains_list = list(strains.keys())
strains_count = len(strains_list)
if strains_count == 1:
logging.info("Input species %s: 1 strain detected in input dictionary" % genus_species)
strain_sex = list(strains.keys())[0]
org_wf_param = strains[strain_sex]
# Set workflow path (1 organism)
workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_1_ORG_FILE)
# Check if the versions of tools specified in the workflow are installed in galaxy
utilities_bioblend.install_workflow_tools(workflow_path=workflow_path, instance=org_wf_param.instance)

Loraine Gueguen
committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# Set the workflow parameters (individual tools runtime parameters in the workflow)
workflow_parameters = {}
# Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_FASTA] = {
"organism": org_wf_param.org_id,
"analysis_id": org_wf_param.genome_analysis_id,
"do_update": "true"}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_GFF] = {
"organism": org_wf_param.org_id,
"analysis_id": org_wf_param.ogs_analysis_id}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_FEATURE_SYNC] = {
"organism_id": org_wf_param.org_id}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_POPULATE_VIEWS] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_INDEX] = {}
# Set datamap (mapping of input files in the workflow)
datamap = {}
datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {"src": "hda", "id": org_wf_param.genome_hda_id}
datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {"src": "hda", "id": org_wf_param.gff_hda_id}
datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {"src": "hda", "id": org_wf_param.proteins_hda_id}
with open(workflow_path, 'r') as ga_in_file:
# Store the decoded json dictionary
workflow_dict = json.load(ga_in_file)
workflow_name = workflow_dict["name"]
# For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
# Scratchgmod test: need "http" (or "https"), the hostname (+ port)
if constants.CONF_JBROWSE_MENU_URL not in config.keys():
# default
root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
else:
root_url = config[constants.CONF_JBROWSE_MENU_URL]
species_strain_sex = org_wf_param.chado_species_name.replace(" ", "-")
jbrowse_menu_url = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
root_url=root_url,
genus_sp=genus_species,
Genus=org_wf_param.genus_uppercase,
species_strain_sex=species_strain_sex,
id="{id}")
# Replace values in the workflow dictionary
workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"] = \
workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"]\
.replace("__MENU_URL_ORG__", jbrowse_menu_url)
workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"] = \
workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"]\
.replace("__DISPLAY_NAME_ORG__", org_wf_param.full_name)\
.replace("__UNIQUE_ID_ORG__", org_wf_param.species_folder_name)
# Import the workflow in galaxy as a dict
org_wf_param.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
# Get its attributes
workflow_dict_list = org_wf_param.instance.workflows.get_workflows(name=workflow_name)
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_dict_list[0]["id"] # Index 0 is the most recently imported workflow (the one we want)
logging.debug("Workflow ID: %s" % workflow_id)
# Check if the workflow is found
try:
show_workflow = org_wf_param.instance.workflows.show_workflow(workflow_id=workflow_id)
except bioblend.ConnectionError:
logging.warning("Error finding workflow %s" % workflow_name)
# Finally, invoke the workflow along with its datamap, parameters and the history in which to invoke it
org_wf_param.instance.workflows.invoke_workflow(
workflow_id=workflow_id,
history_id=org_wf_param.history_id,
params=workflow_parameters,
inputs=datamap,
allow_tool_state_corrections=True)
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))
if strains_count == 2:
logging.info("Input organism %s: 2 species detected in input dictionary" % genus_species)
strain_sex_org1 = strains_list[0]
strain_sex_org2 = strains_list[1]
sp_wf_param_org1 = strains[strain_sex_org1]
sp_wf_param_org2 = strains[strain_sex_org2]
# Set workflow path (2 organisms)
workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_2_ORG_FILE)
# Check if the versions of tools specified in the workflow are installed in galaxy
utilities_bioblend.install_workflow_tools(workflow_path=workflow_path, instance=sp_wf_param_org1.instance)

Loraine Gueguen
committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# Set the workflow parameters (individual tools runtime parameters in the workflow)
workflow_parameters = {}
# Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG1] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG1] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG1] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG2] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG2] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG2] = {}
# Organism 1
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_FASTA_ORG1] = {
"organism": sp_wf_param_org1.org_id,
"analysis_id": sp_wf_param_org1.genome_analysis_id,
"do_update": "true"}
# workflow_parameters[JBROWSE_ORG1] = {"jbrowse_menu_url": jbrowse_menu_url_org1}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JBROWSE_ORG1] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_GFF_ORG1] = {
"organism": sp_wf_param_org1.org_id,
"analysis_id": sp_wf_param_org1.ogs_analysis_id}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_FEATURE_SYNC_ORG1] = {
"organism_id": sp_wf_param_org1.org_id}
# workflow_parameters[JBROWSE_CONTAINER] = {"organisms": [{"name": org1_full_name, "unique_id": org1_species_folder_name, }, {"name": org2_full_name, "unique_id": org2_species_folder_name}]}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER] = {}
# Organism 2
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_FASTA_ORG2] = {
"organism": sp_wf_param_org2.org_id,
"analysis_id": sp_wf_param_org2.genome_analysis_id,
"do_update": "true"}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_GFF_ORG2] = {
"organism": sp_wf_param_org2.org_id,
"analysis_id": sp_wf_param_org2.ogs_analysis_id}
# workflow_parameters[JRBOWSE_ORG2] = {"jbrowse_menu_url": jbrowse_menu_url_org2}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JRBOWSE_ORG2] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_FEATURE_SYNC_ORG2] = {
"organism_id": sp_wf_param_org2.org_id}
# POPULATE + INDEX DATA
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_POPULATE_VIEWS] = {}
workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_INDEX] = {}
# Set datamap (mapping of input files in the workflow)
datamap = {}
# Organism 1
datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG1] = {"src": "hda", "id": sp_wf_param_org1.genome_hda_id}
datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG1] = {"src": "hda", "id": sp_wf_param_org1.gff_hda_id}
datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG1] = {"src": "hda", "id": sp_wf_param_org1.proteins_hda_id}
# Organism 2
datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG2] = {"src": "hda", "id": sp_wf_param_org2.genome_hda_id}
datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG2] = {"src": "hda", "id": sp_wf_param_org2.gff_hda_id}
datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG2] = {"src": "hda", "id": sp_wf_param_org2.proteins_hda_id}
with open(workflow_path, 'r') as ga_in_file:
# Store the decoded json dictionary
workflow_dict = json.load(ga_in_file)
workflow_name = workflow_dict["name"]
# For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
# Scratchgmod test: need "http" (or "https"), the hostname (+ port)
if constants.CONF_JBROWSE_MENU_URL not in config.keys():
# default
root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
else:
root_url = config[constants.CONF_JBROWSE_MENU_URL]
species_strain_sex_org1 = sp_wf_param_org1.chado_species_name.replace(" ", "-")
species_strain_sex_org2 = sp_wf_param_org2.chado_species_name.replace(" ", "-")
jbrowse_menu_url_org1 = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
root_url=root_url,
genus_sp=genus_species,
Genus=sp_wf_param_org1.genus_uppercase,
species_strain_sex=species_strain_sex_org1,
id="{id}")
jbrowse_menu_url_org2 = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
root_url=root_url,
genus_sp=genus_species,
Genus=sp_wf_param_org2.genus_uppercase,
species_strain_sex=species_strain_sex_org2,
id="{id}")
# Replace values in the workflow dictionary
jbrowse_tool_state_org1 = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JBROWSE_ORG1]["tool_state"]
jbrowse_tool_state_org1 = jbrowse_tool_state_org1.replace("__MENU_URL_ORG1__", jbrowse_menu_url_org1)
jbrowse_tool_state_org2 = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JRBOWSE_ORG2]["tool_state"]
jbrowse_tool_state_org2 = jbrowse_tool_state_org2.replace("__MENU_URL_ORG2__", jbrowse_menu_url_org2)
# The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
# in galaxy --> define a naming method for these workflows
workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER]["tool_state"] = \
workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER]["tool_state"]\
.replace("__DISPLAY_NAME_ORG1__", sp_wf_param_org1.full_name)\
.replace("__UNIQUE_ID_ORG1__", sp_wf_param_org1.species_folder_name)\
.replace("__DISPLAY_NAME_ORG2__", sp_wf_param_org2.full_name)\
.replace("__UNIQUE_ID_ORG2__", sp_wf_param_org2.species_folder_name)
# Import the workflow in galaxy as a dict
sp_wf_param_org1.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
# Get its attributes
workflow_dict_list = sp_wf_param_org1.instance.workflows.get_workflows(name=workflow_name)
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_dict_list[0]["id"] # Index 0 is the most recently imported workflow (the one we want)
logging.debug("Workflow ID: %s" % workflow_id)
# Check if the workflow is found
try:
show_workflow = sp_wf_param_org1.instance.workflows.show_workflow(workflow_id=workflow_id)
except bioblend.ConnectionError:
logging.warning("Error finding workflow %s" % workflow_name)
# Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it
sp_wf_param_org1.instance.workflows.invoke_workflow(
workflow_id=workflow_id,
history_id=sp_wf_param_org1.history_id,
params=workflow_parameters,
inputs=datamap,
allow_tool_state_corrections=True)
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))