Skip to content
Snippets Groups Projects
gga_run_workflow_phaeo_jbrowse.py 33.37 KiB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import bioblend.galaxy.objects
import argparse
import os
import logging
import sys
import json
import time

import utilities
import utilities_bioblend
import constants
import constants_phaeo
import runWorkflowPhaeo

class OrgWorkflowParamJbrowse(runWorkflowPhaeo.OrgWorkflowParam):

    def __init__(self, genus_uppercase, chado_species_name, full_name, species_folder_name,
                 org_id, history_id, instance, genome_analysis_id=None, ogs_analysis_id=None,
                 genome_hda_id=None, gff_hda_id=None, transcripts_hda_id=None, proteins_hda_id=None):
        self.genome_analysis_id = genome_analysis_id
        self.ogs_analysis_id = ogs_analysis_id
        self.genome_hda_id = genome_hda_id
        self.gff_hda_id = gff_hda_id
        self.transcripts_hda_id = transcripts_hda_id
        self.proteins_hda_id = proteins_hda_id
        super().__init__(genus_uppercase, chado_species_name, full_name, species_folder_name,
                 org_id, history_id, instance)

    def check_param(self):
        params = [self.genus_uppercase,
                  self.chado_species_name,
                  self.full_name,
                  self.species_folder_name,
                  self.org_id,
                  self.history_id,
                  self.instance,
                  self.genome_analysis_id,
                  self.ogs_analysis_id,
                  self.genome_hda_id,
                  self.gff_hda_id,
                  self.transcripts_hda_id,
                  self.proteins_hda_id]
        utilities_bioblend.check_wf_param(self.full_name, params)

class RunWorkflowJbrowse(runWorkflowPhaeo.RunWorkflow):
    """
    Run a workflow into the galaxy instance's history of a given species


    This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,
    provided the user creates their own workflow in a .ga format, and change the set_parameters function
    to have the correct parameters for their workflow

    """

    def __init__(self, parameters_dictionary):

        super().__init__(parameters_dictionary)

        self.chado_species_name = " ".join(utilities.filter_empty_not_empty_items(
            [self.species, self.strain, self.sex])["not_empty"])

        self.abbreviation = self.genus_uppercase[0] + ". " + self.chado_species_name

        self.common = self.name
        if not self.common_name is None and self.common_name != "":
            self.common = self.common_name

        self.genome_analysis_name = "genome v{0} of {1}".format(self.genome_version, self.full_name)
        self.genome_analysis_programversion = "genome v{0}".format(self.genome_version)
        self.genome_analysis_sourcename = self.full_name

        self.ogs_analysis_name = "OGS{0} of {1}".format(self.ogs_version, self.full_name)
        self.ogs_analysis_programversion = "OGS{0}".format(self.ogs_version)
        self.ogs_analysis_sourcename = self.full_name

        self.genome_hda_id = None
        self.gff_hda_id = None
        self.transcripts_hda_id = None
        self.proteins_hda_id = None

    def install_individual_tools(self):
        """
        This function is used to verify that installed tools called outside workflows have the correct versions and changesets
        If it finds versions don't match, will install the correct version + changeset in the instance
        Doesn't do anything if versions match

        :return:
        """

        logging.info("Validating installed individual tools versions and changesets")

        # Verify that the add_organism and add_analysis versions are correct in the instance
        # changeset for 2.3.4+galaxy0 has to be manually found because there is no way to get the wanted changeset of a non installed tool via bioblend
        # except for workflows (.ga) that already contain the changeset revisions inside the steps ids

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
                                                       version=constants_phaeo.GET_ORGANISMS_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.GET_ORGANISMS_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ANALYSES_TOOL_ID,
                                                       version=constants_phaeo.GET_ANALYSES_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.GET_ANALYSES_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
                                                       version=constants_phaeo.ADD_ORGANISM_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ADD_ORGANISM_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ANALYSIS_TOOL_ID,
                                                       version=constants_phaeo.ADD_ANALYSIS_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ADD_ANALYSIS_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ANALYSIS_SYNC_TOOL_ID,
                                                       version=constants_phaeo.ANALYSIS_SYNC_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ANALYSIS_SYNC_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
                                                       version=constants_phaeo.ORGANISM_SYNC_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ORGANISM_SYNC_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        logging.info("Success: individual tools versions and changesets validated")

    def add_organism_and_sync(self):

        get_organisms_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
            instance=self.instance,
            tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={},
            time_sleep=10
        )
        organisms_dict_list = json.loads(get_organisms_tool_dataset)  # Turn the dataset into a list for parsing

        org_id = None

        # Look up list of outputs (dictionaries)
        for org_dict in organisms_dict_list:
            if org_dict["genus"] == self.genus_uppercase and org_dict["species"] == self.chado_species_name:
                org_id = str(org_dict["organism_id"])  # id needs to be a str to be recognized by chado tools

        if org_id is None:
            add_organism_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
                instance=self.instance,
                tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.common})
            organism_dict = json.loads(add_organism_tool_dataset)
            org_id = str(organism_dict["organism_id"])  # id needs to be a str to be recognized by chado tools

        # Synchronize newly added organism in Tripal
        logging.info("Synchronizing organism %s in Tripal" % self.full_name)
        time.sleep(60)
        utilities_bioblend.run_tool(
            instance=self.instance,
            tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={"organism_id": org_id})

        return org_id

    def import_datasets_into_history(self):
        """
        Find datasets in a library, get their ID and import them into the current history if they are not already
        """

        genome_ldda_id = None
        transcripts_ldda_id = None
        proteins_ldda_id = None
        gff_ldda_id = None

        genome_hda_id = None
        gff_hda_id = None
        transcripts_hda_id = None
        proteins_hda_id = None

        folder_dict_list = self.instance.libraries.get_folders(library_id=str(self.library_id))

        folders_id_dict = {}

        # Loop over the folders in the library and map folders names to their IDs
        for folder_dict in folder_dict_list:
            folders_id_dict[folder_dict["name"]] = folder_dict["id"]

        # Iterating over the folders to find datasets and map datasets to their IDs
        for folder_name, folder_id in folders_id_dict.items():
            if folder_name == "/genome/{0}/v{1}".format(self.species_folder_name, self.genome_version):
                sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
                for value in sub_folder_content.values():
                    for e in value:
                        if type(e) == dict:
                            if e["name"].endswith(self.genome_filename):
                                genome_ldda_id = e["ldda_id"]

            if folder_name == "/annotation/{0}/OGS{1}".format(self.species_folder_name, self.ogs_version):
                sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
                for value in sub_folder_content.values():
                    for e in value:
                        if type(e) == dict:
                            ldda_name = e["name"]
                            ldda_id = e["ldda_id"]
                            if ldda_name.endswith(self.transcripts_filename):
                                transcripts_ldda_id = ldda_id
                            elif ldda_name.endswith(self.proteins_filename):
                                proteins_ldda_id = ldda_id
                            elif ldda_name.endswith(self.gff_filename):
                                gff_ldda_id = ldda_id

        hda_list = self.instance.datasets.get_datasets(self.history_id)
        # Finding datasets in history (matching datasets names)
        for hda in hda_list:
            hda_name = hda["name"]
            hda_id = hda["id"]
            if hda_name == self.genome_filename:
                genome_hda_id = hda_id
            if hda_name ==  self.gff_filename:
                gff_hda_id = hda_id
            if hda_name == self.transcripts_filename:
                transcripts_hda_id = hda_id
            if hda_name == self.proteins_filename :
                proteins_hda_id = hda_id

        # Import each dataset into history if it is not imported
        logging.debug("Uploading datasets into history %s" % self.history_id)

        if genome_hda_id is None:
            genome_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=genome_ldda_id)
            genome_hda_id = genome_dataset_upload["id"]
        if gff_hda_id is  None:
            gff_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=gff_ldda_id)
            gff_hda_id = gff_dataset_upload["id"]
        if proteins_hda_id is None:
            proteins_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=proteins_ldda_id)
            proteins_hda_id = proteins_dataset_upload["id"]
        if transcripts_hda_id is None:
            transcripts_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=transcripts_ldda_id)
            transcripts_hda_id = transcripts_dataset_upload["id"]

        self.genome_hda_id = genome_hda_id
        self.gff_hda_id = gff_hda_id
        self.transcripts_hda_id = transcripts_hda_id
        self.proteins_hda_id = proteins_hda_id

def prepare_history_and_get_wf_param(sp_dict_list, main_dir, config):

    all_org_wf_param_dict = {}
    for sp_dict in sp_dict_list:

        run_workflow_for_current_organism = RunWorkflowJbrowse(parameters_dictionary=sp_dict)

        # Verifying the galaxy container is running
        if not utilities_bioblend.check_galaxy_state(network_name=run_workflow_for_current_organism.genus_species,
                                                     script_dir=run_workflow_for_current_organism.script_dir):
            logging.critical(
                "The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.genus_species)
            sys.exit()

        else:

            # Setting some of the instance attributes
            run_workflow_for_current_organism.main_dir = main_dir

            run_workflow_for_current_organism.set_galaxy_instance(config)
            run_workflow_for_current_organism.set_history()
            run_workflow_for_current_organism.install_individual_tools()
            run_workflow_for_current_organism.import_datasets_into_history()

            analyses_dict_list = run_workflow_for_current_organism.get_analyses()

            org_id = run_workflow_for_current_organism.add_organism_and_sync()
            genome_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
                analyses_dict_list=analyses_dict_list,
                analysis_name=run_workflow_for_current_organism.genome_analysis_name,
                analysis_programversion=run_workflow_for_current_organism.genome_analysis_programversion,
                analysis_sourcename=run_workflow_for_current_organism.genome_analysis_sourcename
            )
            ogs_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
                analyses_dict_list=analyses_dict_list,
                analysis_name=run_workflow_for_current_organism.ogs_analysis_name,
                analysis_programversion=run_workflow_for_current_organism.ogs_analysis_programversion,
                analysis_sourcename=run_workflow_for_current_organism.ogs_analysis_sourcename
            )

            # Create the StrainWorkflowParam object holding all attributes needed for the workflow
            org_wf_param = OrgWorkflowParamJbrowse(
                genus_uppercase=run_workflow_for_current_organism.genus_uppercase,
                full_name=run_workflow_for_current_organism.full_name,
                species_folder_name=run_workflow_for_current_organism.species_folder_name,
                chado_species_name=run_workflow_for_current_organism.chado_species_name,
                org_id=org_id,
                genome_analysis_id=genome_analysis_id,
                ogs_analysis_id=ogs_analysis_id,
                genome_hda_id=run_workflow_for_current_organism.genome_hda_id,
                gff_hda_id=run_workflow_for_current_organism.gff_hda_id,
                transcripts_hda_id=run_workflow_for_current_organism.transcripts_hda_id,
                proteins_hda_id=run_workflow_for_current_organism.proteins_hda_id,
                history_id=run_workflow_for_current_organism.history_id,
                instance=run_workflow_for_current_organism.instance
            )
            org_wf_param.check_param()

            # Add the species dictionary to the complete dictionary
            # This dictionary contains every organism present in the input file
            # Its structure is the following:
            # {genus species: {strain1_sex1: {variables_key: variables_values}, strain1_sex2: {variables_key: variables_values}}}
            if not run_workflow_for_current_organism.genus_species in all_org_wf_param_dict.keys():
                all_org_wf_param_dict[run_workflow_for_current_organism.genus_species] = {
                    run_workflow_for_current_organism.strain_sex: org_wf_param}
            else:
                if not run_workflow_for_current_organism.strain_sex in all_org_wf_param_dict[
                    run_workflow_for_current_organism.genus_species].keys():
                    all_org_wf_param_dict[run_workflow_for_current_organism.genus_species][
                        run_workflow_for_current_organism.strain_sex] = org_wf_param
                else:
                    logging.error("Duplicate organism with 'genus_species' = '{0}' and 'strain_sex' = '{1}'".format(
                        run_workflow_for_current_organism.genus_species, run_workflow_for_current_organism.strain_sex))

    return all_org_wf_param_dict

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run Galaxy workflows, specific to Phaeoexplorer data")

    parser.add_argument("input",
                        type=str,
                        help="Input file (yml)")

    parser.add_argument("-v", "--verbose",
                        help="Increase output verbosity",
                        action="store_true")

    parser.add_argument("--config",
                        type=str,
                        help="Config path, default to the 'config' file inside the script repository")

    parser.add_argument("--main-directory",
                        type=str,
                        help="Where the stack containers will be located, defaults to working directory")

    args = parser.parse_args()

    bioblend_logger = logging.getLogger("bioblend")
    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
        bioblend_logger.setLevel(logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)
        bioblend_logger.setLevel(logging.INFO)

    # Parsing the config file if provided, using the default config otherwise
    if args.config:
        config_file = os.path.abspath(args.config)
    else:
        config_file = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), constants.DEFAULT_CONFIG)

    main_dir = None
    if not args.main_directory:
        main_dir = os.getcwd()
    else:
        main_dir = os.path.abspath(args.main_directory)

    config = utilities.parse_config(config_file)
    sp_dict_list = utilities.parse_input(args.input)
    script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))

    all_org_wf_param_dict = prepare_history_and_get_wf_param(
        sp_dict_list=sp_dict_list,
        main_dir=main_dir,
        config=config)

    for genus_species, strains in all_org_wf_param_dict.items():
        strains_list = list(strains.keys())
        strains_count = len(strains_list)

        if strains_count == 1:
            logging.info("Input species %s: 1 strain detected in input dictionary" % genus_species)
            strain_sex = list(strains.keys())[0]
            org_wf_param = strains[strain_sex]

            # Set workflow path (1 organism)
            workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_1_ORG_FILE)

            # Check if the versions of tools specified in the workflow are installed in galaxy
            utilities_bioblend.install_workflow_tools(workflow_path=workflow_path, instance=org_wf_param.instance)

            # Set the workflow parameters (individual tools runtime parameters in the workflow)
            workflow_parameters = {}
            # Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_FASTA] = {
                "organism": org_wf_param.org_id,
                "analysis_id": org_wf_param.genome_analysis_id,
                "do_update": "true"}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_GFF] = {
                "organism": org_wf_param.org_id,
                "analysis_id": org_wf_param.ogs_analysis_id}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_FEATURE_SYNC] = {
                "organism_id": org_wf_param.org_id}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_POPULATE_VIEWS] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_INDEX] = {}

            # Set datamap (mapping of input files in the workflow)
            datamap = {}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {"src": "hda", "id": org_wf_param.genome_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {"src": "hda", "id": org_wf_param.gff_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {"src": "hda", "id": org_wf_param.proteins_hda_id}

            with open(workflow_path, 'r') as ga_in_file:

                # Store the decoded json dictionary
                workflow_dict = json.load(ga_in_file)
                workflow_name = workflow_dict["name"]

                # For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
                # as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
                # Scratchgmod test: need "http" (or "https"), the hostname (+ port)
                if constants.CONF_JBROWSE_MENU_URL not in config.keys():
                    # default
                    root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
                else:
                    root_url = config[constants.CONF_JBROWSE_MENU_URL]
                species_strain_sex = org_wf_param.chado_species_name.replace(" ", "-")
                jbrowse_menu_url = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                    root_url=root_url,
                    genus_sp=genus_species,
                    Genus=org_wf_param.genus_uppercase,
                    species_strain_sex=species_strain_sex,
                    id="{id}")
                # Replace values in the workflow dictionary
                workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"] = \
                    workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"]\
                    .replace("__MENU_URL_ORG__", jbrowse_menu_url)
                workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"] = \
                    workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"]\
                    .replace("__DISPLAY_NAME_ORG__", org_wf_param.full_name)\
                    .replace("__UNIQUE_ID_ORG__", org_wf_param.species_folder_name)

                # Import the workflow in galaxy as a dict
                org_wf_param.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

                # Get its attributes
                workflow_dict_list = org_wf_param.instance.workflows.get_workflows(name=workflow_name)
                # Then get its ID (required to invoke the workflow)
                workflow_id = workflow_dict_list[0]["id"]  # Index 0 is the most recently imported workflow (the one we want)
                logging.debug("Workflow ID: %s" % workflow_id)
                # Check if the workflow is found
                try:
                    show_workflow = org_wf_param.instance.workflows.show_workflow(workflow_id=workflow_id)
                except bioblend.ConnectionError:
                    logging.warning("Error finding workflow %s" % workflow_name)

                # Finally, invoke the workflow along with its datamap, parameters and the history in which to invoke it
                org_wf_param.instance.workflows.invoke_workflow(
                    workflow_id=workflow_id,
                    history_id=org_wf_param.history_id,
                    params=workflow_parameters,
                    inputs=datamap,
                    allow_tool_state_corrections=True)

                logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))

        if strains_count == 2:

            logging.info("Input organism %s: 2 species detected in input dictionary" % genus_species)
            strain_sex_org1 = strains_list[0]
            strain_sex_org2 = strains_list[1]
            sp_wf_param_org1 = strains[strain_sex_org1]
            sp_wf_param_org2 = strains[strain_sex_org2]

            # Set workflow path (2 organisms)
            workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_2_ORG_FILE)

            # Check if the versions of tools specified in the workflow are installed in galaxy
            utilities_bioblend.install_workflow_tools(workflow_path=workflow_path, instance=sp_wf_param_org1.instance)

            # Set the workflow parameters (individual tools runtime parameters in the workflow)
            workflow_parameters = {}
            # Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG2] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG2] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG2] = {}
            # Organism 1
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_FASTA_ORG1] = {
                "organism": sp_wf_param_org1.org_id,
                "analysis_id": sp_wf_param_org1.genome_analysis_id,
                "do_update": "true"}
            # workflow_parameters[JBROWSE_ORG1] = {"jbrowse_menu_url": jbrowse_menu_url_org1}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JBROWSE_ORG1] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_GFF_ORG1] = {
                "organism": sp_wf_param_org1.org_id,
                "analysis_id": sp_wf_param_org1.ogs_analysis_id}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_FEATURE_SYNC_ORG1] = {
                "organism_id": sp_wf_param_org1.org_id}
            # workflow_parameters[JBROWSE_CONTAINER] = {"organisms": [{"name": org1_full_name, "unique_id": org1_species_folder_name, }, {"name": org2_full_name, "unique_id": org2_species_folder_name}]}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER] = {}
            # Organism 2
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_FASTA_ORG2] = {
                "organism": sp_wf_param_org2.org_id,
                "analysis_id": sp_wf_param_org2.genome_analysis_id,
                "do_update": "true"}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_LOAD_GFF_ORG2] = {
                "organism": sp_wf_param_org2.org_id,
                "analysis_id": sp_wf_param_org2.ogs_analysis_id}
            # workflow_parameters[JRBOWSE_ORG2] = {"jbrowse_menu_url": jbrowse_menu_url_org2}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JRBOWSE_ORG2] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_FEATURE_SYNC_ORG2] = {
                "organism_id": sp_wf_param_org2.org_id}
            # POPULATE + INDEX DATA
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_POPULATE_VIEWS] = {}
            workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_INDEX] = {}

            # Set datamap (mapping of input files in the workflow)
            datamap = {}
            # Organism 1
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG1] = {"src": "hda", "id": sp_wf_param_org1.genome_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG1] = {"src": "hda", "id": sp_wf_param_org1.gff_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG1] = {"src": "hda", "id": sp_wf_param_org1.proteins_hda_id}
            # Organism 2
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GENOME_ORG2] = {"src": "hda", "id": sp_wf_param_org2.genome_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_GFF_ORG2] = {"src": "hda", "id": sp_wf_param_org2.gff_hda_id}
            datamap[constants_phaeo.WF_LOAD_GFF_JB_2_ORG_INPUT_PROTEINS_ORG2] = {"src": "hda", "id": sp_wf_param_org2.proteins_hda_id}

            with open(workflow_path, 'r') as ga_in_file:

                # Store the decoded json dictionary
                workflow_dict = json.load(ga_in_file)
                workflow_name = workflow_dict["name"]

                # For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
                # as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
                # Scratchgmod test: need "http" (or "https"), the hostname (+ port)
                if constants.CONF_JBROWSE_MENU_URL not in config.keys():
                    # default
                    root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
                else:
                    root_url = config[constants.CONF_JBROWSE_MENU_URL]
                species_strain_sex_org1 = sp_wf_param_org1.chado_species_name.replace(" ", "-")
                species_strain_sex_org2 = sp_wf_param_org2.chado_species_name.replace(" ", "-")
                jbrowse_menu_url_org1 = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                    root_url=root_url,
                    genus_sp=genus_species,
                    Genus=sp_wf_param_org1.genus_uppercase,
                    species_strain_sex=species_strain_sex_org1,
                    id="{id}")
                jbrowse_menu_url_org2 = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                    root_url=root_url,
                    genus_sp=genus_species,
                    Genus=sp_wf_param_org2.genus_uppercase,
                    species_strain_sex=species_strain_sex_org2,
                    id="{id}")
                # Replace values in the workflow dictionary
                jbrowse_tool_state_org1 = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JBROWSE_ORG1]["tool_state"]
                jbrowse_tool_state_org1 = jbrowse_tool_state_org1.replace("__MENU_URL_ORG1__", jbrowse_menu_url_org1)
                jbrowse_tool_state_org2 = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JRBOWSE_ORG2]["tool_state"]
                jbrowse_tool_state_org2 = jbrowse_tool_state_org2.replace("__MENU_URL_ORG2__", jbrowse_menu_url_org2)
                # The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
                # in galaxy --> define a naming method for these workflows
                workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER]["tool_state"] = \
                    workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_2_ORG_STEP_JB_TO_CONTAINER]["tool_state"]\
                    .replace("__DISPLAY_NAME_ORG1__", sp_wf_param_org1.full_name)\
                    .replace("__UNIQUE_ID_ORG1__", sp_wf_param_org1.species_folder_name)\
                    .replace("__DISPLAY_NAME_ORG2__", sp_wf_param_org2.full_name)\
                    .replace("__UNIQUE_ID_ORG2__", sp_wf_param_org2.species_folder_name)

                # Import the workflow in galaxy as a dict
                sp_wf_param_org1.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

                # Get its attributes
                workflow_dict_list = sp_wf_param_org1.instance.workflows.get_workflows(name=workflow_name)
                # Then get its ID (required to invoke the workflow)
                workflow_id = workflow_dict_list[0]["id"]  # Index 0 is the most recently imported workflow (the one we want)
                logging.debug("Workflow ID: %s" % workflow_id)
                # Check if the workflow is found
                try:
                    show_workflow = sp_wf_param_org1.instance.workflows.show_workflow(workflow_id=workflow_id)
                except bioblend.ConnectionError:
                    logging.warning("Error finding workflow %s" % workflow_name)

                # Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it
                sp_wf_param_org1.instance.workflows.invoke_workflow(
                    workflow_id=workflow_id,
                    history_id=sp_wf_param_org1.history_id,
                    params=workflow_parameters,
                    inputs=datamap,
                    allow_tool_state_corrections=True)

                logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))