Skip to content
Snippets Groups Projects
run_workflow_phaeoexplorer.py 29.82 KiB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import bioblend
import bioblend.galaxy.objects
import argparse
import os
import logging
import sys
import json
import time
import utilities
import speciesData

from bioblend.galaxy.objects import GalaxyInstance
from bioblend import galaxy

""" 
gga_init.py

Usage: $ python3 gga_init.py -i input_example.yml --config [config file] [OPTIONS]
"""


class RunWorkflow(speciesData.SpeciesData):
    """
    Run a workflow into the galaxy instance's history of a given species


    This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,
    provided the user creates their own workflow in a .ga format, and change the set_parameters function
    to have the correct parameters for their workflow (TODO: use a mapping file for parameters and the .ga file)

    """


    def set_get_history(self):
        """
        Create or set the working history to the current species one

        TODO move to utilities

        :return:
        """
        try:
            histories = self.instance.histories.get_histories(name=str(self.full_name))
            self.history_id = histories[0]["id"]
            logging.info("History for {0}: {1}".format(self.full_name, self.history_id))
        except IndexError:
            logging.info("Creating history for %s" % self.full_name)
            self.instance.histories.create_history(name=str(self.full_name))
            histories = self.instance.histories.get_histories(name=str(self.full_name))
            self.history_id = histories[0]["id"]
            logging.info("History for {0}: {1}".format(self.full_name, self.history_id))

        return self.history_id

    def get_instance_attributes(self):
        """
        retrieves instance attributes:
        - working history ID
        - libraries ID (there should only be one library!)
        - datasets IDs

        :return:
        """

        histories = self.instance.histories.get_histories(name=str(self.full_name))
        self.history_id = histories[0]["id"]

        logging.debug("history ID: " + self.history_id)
        libraries = self.instance.libraries.get_libraries()  # normally only one library

        self.library_id = self.instance.libraries.get_libraries()[0]["id"]  # project data folder/library
        logging.debug("library ID: " + self.history_id)
        instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id)

        # Access folders via their absolute path
        genome_folder = self.instance.libraries.get_folders(library_id=self.library_id, name="/genome/" + str(self.species_folder_name) + "/v" + str(self.genome_version))
        annotation_folder = self.instance.libraries.get_folders(library_id=self.library_id, name="/annotation/" + str(self.species_folder_name) + "/OGS" + str(self.ogs_version))
        
        # Get their IDs
        genome_folder_id = genome_folder[0]["id"]
        annotation_folder_id = annotation_folder[0]["id"]

        # Get the content of the folders
        genome_folder_content = self.instance.folders.show_folder(folder_id=genome_folder_id, contents=True)
        annotation_folder_content = self.instance.folders.show_folder(folder_id=annotation_folder_id, contents=True)

        # Find genome folder datasets
        genome_fasta_ldda_id = genome_folder_content["folder_contents"][0]["ldda_id"]

        annotation_gff_ldda_id, annotation_proteins_ldda_id, annotation_transcripts_ldda_id = None, None, None

        # Several dicts in the annotation folder content (one dict = one file)
        for k, v in annotation_folder_content.items():
            if k == "folder_contents":
                for d in v:
                    if "proteins" in d["name"]:
                        annotation_proteins_ldda_id = d["ldda_id"]
                    if "transcripts" in d["name"]:
                        annotation_transcripts_ldda_id = d["ldda_id"]
                    if ".gff" in d["name"]:
                        annotation_gff_ldda_id = d["ldda_id"]

        self.datasets["genome_file"] = genome_fasta_ldda_id
        self.datasets["gff_file"] = annotation_gff_ldda_id
        self.datasets["proteins_file"] = annotation_proteins_ldda_id
        self.datasets["transcripts_file"] = annotation_transcripts_ldda_id

        return {"history_id": self.history_id, "library_id": self.library_id, "datasets": self.datasets}


    def connect_to_instance(self):
        """
        Test the connection to the galaxy instance for the current organism
        Exit if we cannot connect to the instance

        """
        self.instance = galaxy.GalaxyInstance(url=self.instance_url,
                                              email=self.config["galaxy_default_admin_email"],
                                              password=self.config["galaxy_default_admin_password"]
                                              )

        logging.info("Connecting to the galaxy instance %s" % self.instance_url)
        try:
            self.instance.histories.get_histories()
        except bioblend.ConnectionError:
            logging.critical("Cannot connect to galaxy instance %s" % self.instance_url)
            sys.exit()
        else:
            logging.info("Successfully connected to galaxy instance %s" % self.instance_url)


    def prepare_history(self):
        """
        Galaxy instance startup in preparation for importing datasets and running a workflow
        - Add organism and analyses into the chado database
        - Get any other existing organisms IDs before updating the galaxy instance --> separate

        Calling this function is mandatory to have a working galaxy instance history

        :return:
        """

        self.connect_to_instance()
        histories = self.instance.histories.get_histories(name=str(self.full_name))

        # Add organism (species) to chado
        
        logging.info("Adding organism to the instance's chado database")
        if self.common == "" or self.common is None:
            self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3",
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.abbreviation})
        else:
            self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3",
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.common})

        # Add OGS analysis to chado
        logging.info("Adding OGS analysis to the instance's chado database")
        self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3",
            history_id=self.history_id,
            tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version,
                         "program": "Performed by Genoscope",
                         "programversion": str(self.sex + " OGS" + self.ogs_version),
                         "sourcename": "Genoscope",
                         "date_executed": self.date})

        # Add genome analysis to chado
        logging.info("Adding genome analysis to the instance's chado database")
        self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2",
            history_id=self.history_id,
            tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version,
                         "program": "Performed by Genoscope",
                         "programversion": str(self.sex + "genome v" + self.genome_version),
                         "sourcename": "Genoscope",
                         "date_executed": self.date})

        # Also get the organism and analyses IDs
        self.get_organism_and_analyses_ids()

        logging.info("Finished initializing instance")


    def run_workflow(self, workflow_path, workflow_parameters, workflow_name, datamap):
        """
        Run a workflow in galaxy
        Requires the .ga file to be loaded as a dictionary (optionally could be uploaded as a raw file)

        :param workflow_name:
        :param workflow_parameters:
        :param datamap:
        :return:
        """

        logging.info("Importing workflow: " + str(workflow_path))
        workflow_ga_file = workflow_path

        with open(workflow_ga_file, 'r') as ga_in_file:
            # Store the decoded json dictionary
            workflow_dict = json.load(ga_in_file)

            self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
            workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)
            workflow_id = workflow_attributes[0]["id"]
            show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)
            try:
                logging.debug("Workflow ID: %s" % workflow_id)
            except Exception:
                logging.warning("Error retrieving workflow attributes for workflow %s" % workflow_name)

            self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
                                                    history_id=self.history_id,
                                                    params=workflow_parameters,
                                                    inputs=datamap,
                                                    inputs_by="",
                                                    allow_tool_state_corrections=True)

            logging.info("Successfully imported and invoked workflow {0}, check your galaxy instance ({1}) for the jobs state".format(workflow_name, self.instance_url))

    def import_datasets_into_history(self):
        """
        Find datasets in a library, get their ID and import them into the current history if they are not already

        :return:
        """

        # Instanciate the instance 
        gio = GalaxyInstance(url=self.instance_url,
                             email=self.config["galaxy_default_admin_email"],
                             password=self.config["galaxy_default_admin_password"])

        prj_lib = gio.libraries.get_previews(name="Project Data")
        self.library_id = prj_lib[0].id

        instance_source_data_folders = self.instance.libraries.get_folders(library_id=str(self.library_id))

        folders_ids = {}
        current_folder_name = ""
        # Loop over the folders in the library and map folders names to their IDs
        for i in instance_source_data_folders:
            for k, v in i.items():
                if k == "name":
                    folders_ids[v] = 0
                    current_folder_name = v
                if k == "id":
                    folders_ids[current_folder_name] = v

        # Iterating over the folders to find datasets and map datasets to their IDs
        logging.info("Datasets IDs: ")
        for k, v in folders_ids.items():
            if k == "/genome":
                sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
                final_sub_folder_content = self.instance.folders.show_folder(folder_id=sub_folder_content["folder_contents"][0]["id"], contents=True)
                for k2, v2 in final_sub_folder_content.items():
                    for e in v2:
                        if type(e) == dict:
                            if e["name"].endswith(".fa"):
                                self.datasets["genome_file"] = e["ldda_id"]
                                logging.info("\t" + e["name"] + ": " + e["ldda_id"])
            if k == "/annotation":
                sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
                final_sub_folder_content = self.instance.folders.show_folder(folder_id=sub_folder_content["folder_contents"][0]["id"], contents=True)
                for k2, v2 in final_sub_folder_content.items():
                    for e in v2:
                        if type(e) == dict:
                            # TODO: manage versions? (differentiate between the correct folders using self.config)
                            if "transcripts" in e["name"]:
                                self.datasets["transcripts_file"] = e["ldda_id"]
                                logging.info("\t" + e["name"] + ": " + e["ldda_id"])
                            elif "proteins" in e["name"]:
                                self.datasets["proteins_file"] = e["ldda_id"]
                                logging.info("\t" + e["name"] + ": " + e["ldda_id"])
                            elif "gff" in e["name"]:
                                self.datasets["gff_file"] = e["ldda_id"]
                                logging.info("\t" + e["name"] + ": " + e["ldda_id"])

        logging.info("Uploading datasets into history %s" % self.history_id)
        self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["genome_file"])
        self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["gff_file"])
        self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["transcripts_file"])
        self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["proteins_file"])

        return {"history_id": self.history_id, "library_id": self.library_id, "datasets": self.datasets}


    def get_organism_and_analyses_ids(self):
        """
        Retrieve current organism ID and OGS and genome chado analyses IDs (needed to run some tools as Tripal/Chado
        doesn't accept organism/analyses names as valid inputs

        WARNING: It is mandatory to call this function before invoking a workflow

        :return:
        """
        # Get the ID for the current organism in chado
        org = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",
            history_id=self.history_id,
            tool_inputs={"abbr": self.abbreviation,
                         "genus": self.genus_uppercase,
                         "species": self.chado_species_name,
                         "common": self.common})
        time.sleep(3)
        # Run tool again (sometimes the tool doesn't return anything despite the organism already being in the db)
        org = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",
            history_id=self.history_id,
            tool_inputs={"abbr": self.abbreviation,
                         "genus": self.genus_uppercase,
                         "species": self.chado_species_name,
                         "common": self.common})
        time.sleep(10)
        org_job_out = org["outputs"][0]["id"]
        org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
        try:
            org_output = json.loads(org_json_output)[0]
            self.org_id = str(org_output["organism_id"])  # id needs to be a str to be recognized by chado tools
        except IndexError:
            logging.debug("No organism matching " + self.full_name + " exists in the instance's chado database")

        # Get the ID for the OGS analysis in chado
        ogs_analysis = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
            history_id=self.history_id,
            tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version})
        ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"]
        ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out)
        try:
            ogs_analysis_output = json.loads(ogs_analysis_json_output)[0]
            self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"])
        except IndexError:
            logging.debug("no matching OGS analysis exists in the instance's chado database")

        # Get the ID for the genome analysis in chado
        genome_analysis = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
            history_id=self.history_id,
            tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version})
        genome_analysis_job_out = genome_analysis["outputs"][0]["id"]
        genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out)
        try:
            genome_analysis_output = json.loads(genome_analysis_json_output)[0]
            self.genome_analysis_id = str(genome_analysis_output["analysis_id"])
        except IndexError:
            logging.debug("no matching genome analysis exists in the instance's chado database")



if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction "
                                                 "with galaxy instances for GGA"
                                                 ", following the protocol @ "
                                                 "http://gitlab.sb-roscoff.fr/abims/e-infra/gga")

    parser.add_argument("input",
                        type=str,
                        help="Input file (yml)")

    parser.add_argument("-v", "--verbose",
                        help="Increase output verbosity",
                        action="store_true")

    parser.add_argument("--config",
                        type=str,
                        help="Config path, default to the 'config' file inside the script repository")

    parser.add_argument("--main-directory",
                        type=str,
                        help="Where the stack containers will be located, defaults to working directory")

    parser.add_argument("--workflow", "-w",
                        type=str,
                        help="Worfklow to run")

    args = parser.parse_args()

    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
    else:
        logging.basicConfig(level=logging.INFO)
    logging.getLogger("urllib3").setLevel(logging.INFO)
    logging.getLogger("bioblend").setLevel(logging.INFO)

    # Parsing the config file if provided, using the default config otherwise
    if not args.config:
        args.config = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), "config")
    else:
        args.config = os.path.abspath(args.config)

    if not args.main_directory:
        args.main_directory = os.getcwd()
    else:
        args.main_directory = os.path.abspath(args.main_directory)

    sp_dict_list = utilities.parse_input(args.input)

    for sp_dict in sp_dict_list:

        # Creating an instance of the RunWorkflow object for the current organism
        run_workflow_for_current_organism = RunWorkflow(parameters_dictionary=sp_dict)

        #  Checking if user specified a workflow to run
        if not args.workflow:
            logging.critical("No workflow specified, exiting")
            sys.exit()
        else:
            workflow = os.path.abspath(args.workflow)

        # Verifying the galaxy container is running
        if utilities.check_galaxy_state(genus_lowercase=run_workflow_for_current_organism.genus_lowercase,
                                        species=run_workflow_for_current_organism.species,
                                        script_dir=run_workflow_for_current_organism.script_dir):

            # Starting
            logging.info("run_workflow.py called for %s" % run_workflow_for_current_organism.full_name)

            # Setting some of the instance attributes
            run_workflow_for_current_organism.main_dir = args.main_directory
            run_workflow_for_current_organism.species_dir = os.path.join(run_workflow_for_current_organism.main_dir,
                                                                         run_workflow_for_current_organism.genus_species +
                                                                         "/")

            # Parse the config yaml file
            run_workflow_for_current_organism.config = utilities.parse_config(args.config)
            # Set the instance url attribute
            for env_variable, value in run_workflow_for_current_organism.config.items():
                if env_variable == "hostname":
                    run_workflow_for_current_organism.instance_url = "http://{0}:8888/sp/{1}/galaxy/".format(
                        value, run_workflow_for_current_organism.genus_species)
                    break
                else:
                    run_workflow_for_current_organism.instance_url = "http://localhost:8888/sp/{0}_{1}/galaxy/".format(
                        run_workflow_for_current_organism.genus_lowercase,
                        run_workflow_for_current_organism.species)

            # TODO: Create distinct methods to call different pre-set workflows using CL arguments/config options (i.e load-chado, jbrowse, functional-annotation, orthology, ...)

            # If input workflow is Chado_load_Tripal_synchronize.ga
            if "Chado_load_Tripal_synchronize" in str(workflow):

                logging.info("Executing workflow 'Chado_load_Tripal_synchronize'")

                run_workflow_for_current_organism.connect_to_instance()
                run_workflow_for_current_organism.set_get_history()
                # run_workflow_for_current_organism.get_species_history_id()

                # Prepare the instance+history for the current organism (add organism and analyses in Chado) TODO: add argument "setup"
                # (although it should pose no problem as the "Chado add" refuses to duplicate an analysis/organism anyway)
                run_workflow_for_current_organism.prepare_history()

                # Get the attributes of the instance and project data files
                run_workflow_for_current_organism.get_instance_attributes()
                run_workflow_for_current_organism.get_organism_and_analyses_ids()

                # Import datasets into history
                # TODO: it seems it is not required anymore since using "ldda" option for datasets in the workflow datamap doesn't need files from history
                run_workflow_for_current_organism.import_datasets_into_history()

                # Explicit workflow parameter names
                GENOME_FASTA_FILE = "0"
                GFF_FILE = "1"
                PROTEINS_FASTA_FILE = "2"
                TRANSCRIPTS_FASTA_FILE = "3"

                LOAD_FASTA_IN_CHADO = "4"
                LOAD_GFF_IN_CHADO = "5"
                SYNC_ORGANISM_INTO_TRIPAL = "6"
                SYNC_GENOME_ANALYSIS_INTO_TRIPAL = "7"
                SYNC_OGS_ANALYSIS_INTO_TRIPAL = "8"
                SYNC_FEATURES_INTO_TRIPAL = "9"

                workflow_parameters = {}

                workflow_parameters[GENOME_FASTA_FILE] = {}
                workflow_parameters[GFF_FILE] = {}
                workflow_parameters[PROTEINS_FASTA_FILE] = {}
                workflow_parameters[TRANSCRIPTS_FASTA_FILE] = {}
                workflow_parameters[LOAD_FASTA_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
                                                            "analysis_id": run_workflow_for_current_organism.genome_analysis_id,
                                                            "do_update": "true"}
                # Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado
                # WARNING: It is safer to never update it and just change the genome/ogs versions in the config
                workflow_parameters[LOAD_GFF_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
                                                          "analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
                workflow_parameters[SYNC_ORGANISM_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
                workflow_parameters[SYNC_GENOME_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
                workflow_parameters[SYNC_OGS_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.genome_analysis_id}
                workflow_parameters[SYNC_FEATURES_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}

                # Datamap for input datasets - dataset source (type): ldda (LibraryDatasetDatasetAssociation)
                run_workflow_for_current_organism.datamap = {}
                run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["genome_file"]}
                run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["gff_file"]}
                run_workflow_for_current_organism.datamap[PROTEINS_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["proteins_file"]}
                run_workflow_for_current_organism.datamap[TRANSCRIPTS_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["transcripts_file"]}

                run_workflow_for_current_organism.datamap = {}
                run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id":
                    run_workflow_for_current_organism.datasets["genome_file"]}
                run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda",
                                                                       "id": run_workflow_for_current_organism.datasets[
                                                                           "gff_file"]}

                # Run the Chado load Tripal sync workflow with the parameters set above
                run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
                                                               workflow_parameters=workflow_parameters,
                                                               datamap=run_workflow_for_current_organism.datamap,
                                                               workflow_name="Chado load Tripal synchronize")


            # Jbrowse creation workflow
            elif "Jbrowse" in str(workflow):

                logging.info("Executing workflow 'Jbrowse'")

                run_workflow_for_current_organism.connect_to_instance()
                run_workflow_for_current_organism.set_get_history()
                run_workflow_for_current_organism.get_instance_attributes()
                run_workflow_for_current_organism.get_organism_and_analyses_ids()
                run_workflow_for_current_organism.import_datasets_into_history()

                GENOME_FASTA_FILE = "0"
                GFF_FILE = "1"
                ADD_JBROWSE = "2"
                ADD_ORGANISM_TO_JBROWSE = "3"

                workflow_parameters = {}

                workflow_parameters[GENOME_FASTA_FILE] = {}
                workflow_parameters[GFF_FILE] = {}
                # Jbrowse custom feature url
                workflow_parameters[ADD_JBROWSE] = {"jb_menu": {"menu_url": "http://{hostname}:{port}/sp/{genus_sp}/feature/{Genus}/{species}/{id}".format(hostname=run_workflow_for_current_organism.config["hostname"],
                                                                                                                                                           port=run_workflow_for_current_organism.config["http_port"],
                                                                                                                                                           genus_sp=run_workflow_for_current_organism.genus_species,
                                                                                                                                                           Genus=run_workflow_for_current_organism.genus_uppercase,
                                                                                                                                                           species=run_workflow_for_current_organism.species,
                                                                                                                                                           id="id")}}
                # Organism to add to the Jbrowse "container" (consists of a name and an id, not tied to the galaxy instance or chado/tripal names and ids)
                workflow_parameters[ADD_ORGANISM_TO_JBROWSE] = {"name": [{"name": run_workflow_for_current_organism.full_name,
                                                               "unique_id": run_workflow_for_current_organism.abbreviation}]}

                run_workflow_for_current_organism.datamap = {}
                run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["genome_file"]}
                run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["gff_file"]}

                # Run the jbrowse creation workflow
                run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
                                                               workflow_parameters=workflow_parameters,
                                                               datamap=run_workflow_for_current_organism.datamap,
                                                               workflow_name="Chado load Tripal synchronize")



        else:
            logging.critical("The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.full_name)
            sys.exit()