Newer
Older

Arthur Le Bars
committed
#!/usr/bin/env python3

Arthur Le Bars
committed
import bioblend
import bioblend.galaxy.objects
import argparse
import os
import logging
import sys

Arthur Le Bars
committed
import json

Arthur Le Bars
committed
import time

Arthur Le Bars
committed

Arthur Le Bars
committed
from bioblend import galaxy

Arthur Le Bars
committed
import utilities
import speciesData

Arthur Le Bars
committed
"""

Arthur Le Bars
committed

Arthur Le Bars
committed
Usage: $ python3 gga_init.py -i input_example.yml --config [config file] [OPTIONS]

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
"""
Run a workflow into the galaxy instance's history of a given species

Arthur Le Bars
committed

Arthur Le Bars
committed
This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,

Arthur Le Bars
committed
provided the user creates their own workflow in a .ga format, and change the set_parameters function

Arthur Le Bars
committed
to have the correct parameters for their workflow

Arthur Le Bars
committed

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
def set_get_history(self):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Create or set the working history to the current species one

Arthur Le Bars
committed
:return:
"""

Arthur Le Bars
committed
try:
histories = self.instance.histories.get_histories(name=str(self.full_name))
self.history_id = histories[0]["id"]
except IndexError:
logging.info("Creating history for %s" % self.full_name)
self.instance.histories.create_history(name=str(self.full_name))
histories = self.instance.histories.get_histories(name=str(self.full_name))
self.history_id = histories[0]["id"]

Arthur Le Bars
committed
return self.history_id
def get_instance_attributes(self):
"""
retrieves instance attributes:
- working history ID
- libraries ID (there should only be one library!)
- datasets IDs
:return:
"""

Arthur Le Bars
committed

Arthur Le Bars
committed
self.set_get_history()

Arthur Le Bars
committed
logging.debug("History ID: " + self.history_id)

Arthur Le Bars
committed
libraries = self.instance.libraries.get_libraries() # normally only one library

Arthur Le Bars
committed
library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library
logging.debug("Library ID: " + self.history_id)
instance_source_data_folders = self.instance.libraries.get_folders(library_id=library_id)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Access folders via their absolute path
genome_folder = self.instance.libraries.get_folders(library_id=library_id, name="/genome/" + str(self.species_folder_name) + "/v" + str(self.genome_version))
annotation_folder = self.instance.libraries.get_folders(library_id=library_id, name="/annotation/" + str(self.species_folder_name) + "/OGS" + str(self.ogs_version))

Arthur Le Bars
committed
# Get their IDs
genome_folder_id = genome_folder[0]["id"]
annotation_folder_id = annotation_folder[0]["id"]
# Get the content of the folders
genome_folder_content = self.instance.folders.show_folder(folder_id=genome_folder_id, contents=True)
annotation_folder_content = self.instance.folders.show_folder(folder_id=annotation_folder_id, contents=True)
# Find genome folder datasets
genome_fasta_ldda_id = genome_folder_content["folder_contents"][0]["ldda_id"]
annotation_gff_ldda_id, annotation_proteins_ldda_id, annotation_transcripts_ldda_id = None, None, None

Arthur Le Bars
committed
# Several dicts in the annotation folder content (one dict = one file)
for k, v in annotation_folder_content.items():
if k == "folder_contents":
for d in v:
if "proteins" in d["name"]:
annotation_proteins_ldda_id = d["ldda_id"]
if "transcripts" in d["name"]:
annotation_transcripts_ldda_id = d["ldda_id"]
if ".gff" in d["name"]:
annotation_gff_ldda_id = d["ldda_id"]
self.datasets["genome_file"] = genome_fasta_ldda_id
self.datasets["gff_file"] = annotation_gff_ldda_id
self.datasets["proteins_file"] = annotation_proteins_ldda_id
self.datasets["transcripts_file"] = annotation_transcripts_ldda_id
return {"history_id": self.history_id, "library_id": library_id, "datasets": self.datasets}

Arthur Le Bars
committed
def connect_to_instance(self):
"""
Test the connection to the galaxy instance for the current organism
Exit if we cannot connect to the instance
"""
self.instance = galaxy.GalaxyInstance(url=self.instance_url,

Arthur Le Bars
committed
email=self.config["galaxy_default_admin_email"],
password=self.config["galaxy_default_admin_password"]

Arthur Le Bars
committed
)

Arthur Le Bars
committed
logging.info("Connecting to the galaxy instance %s" % self.instance_url)

Arthur Le Bars
committed
try:
self.instance.histories.get_histories()
except bioblend.ConnectionError:

Arthur Le Bars
committed
logging.critical("Cannot connect to galaxy instance %s" % self.instance_url)

Arthur Le Bars
committed
sys.exit()
else:

Arthur Le Bars
committed
logging.info("Successfully connected to galaxy instance %s" % self.instance_url)

Arthur Le Bars
committed
def prepare_history(self):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Galaxy instance startup in preparation for importing datasets and running a workflow

Arthur Le Bars
committed
- Add organism and analyses into the chado database

Arthur Le Bars
committed
- Get any other existing organisms IDs before updating the galaxy instance --> separate
Calling this function is mandatory to have a working galaxy instance history

Arthur Le Bars
committed
:return:
"""
self.connect_to_instance()

Arthur Le Bars
committed
self.set_get_history()

Arthur Le Bars
committed

Arthur Le Bars
committed
# Add organism (species) to chado

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.info("Adding organism to the instance's chado database")

Arthur Le Bars
committed
if self.common == "" or self.common is None:

Arthur Le Bars
committed
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3",
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,

Arthur Le Bars
committed
"common": self.abbreviation})

Arthur Le Bars
committed
else:
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3",
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,

Arthur Le Bars
committed
"common": self.common})

Arthur Le Bars
committed

Arthur Le Bars
committed
# Add OGS analysis to chado
logging.info("Adding OGS analysis to the instance's chado database")
self.instance.tools.run_tool(

Arthur Le Bars
committed
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3",

Arthur Le Bars
committed
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version,

Arthur Le Bars
committed
"program": "Performed by Genoscope",
"programversion": str(self.sex + " OGS" + self.ogs_version),

Arthur Le Bars
committed
"sourcename": "Genoscope",
"date_executed": self.date})
# Add genome analysis to chado
logging.info("Adding genome analysis to the instance's chado database")
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2",
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version,

Arthur Le Bars
committed
"program": "Performed by Genoscope",
"programversion": str(self.sex + "genome v" + self.genome_version),

Arthur Le Bars
committed
"sourcename": "Genoscope",
"date_executed": self.date})

Arthur Le Bars
committed
self.get_organism_and_analyses_ids()

Arthur Le Bars
committed
logging.info("Finished initializing instance")

Arthur Le Bars
committed
def run_workflow(self, workflow_path, workflow_parameters, workflow_name, datamap):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Run a workflow in galaxy
Requires the .ga file to be loaded as a dictionary (optionally could be uploaded as a raw file)

Arthur Le Bars
committed
:param workflow_name:
:param workflow_parameters:
:param datamap:
:return:
"""
logging.info("Importing workflow %s" % str(workflow_path))

Arthur Le Bars
committed

Arthur Le Bars
committed
# Load the workflow file (.ga) in a buffer
with open(workflow_path, 'r') as ga_in_file:
# Then store the decoded json dictionary

Arthur Le Bars
committed

Arthur Le Bars
committed
# In case of the Jbrowse workflow, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
if workflow_name == "Jbrowse":
workflow_dict["steps"]["2"]["tool_state"] = workflow_dict["steps"]["2"]["tool_state"].replace("__MENU_URL__", "http://{hostname}:{port}/sp/{genus_sp}/feature/{Genus}/{species}/{id}".format(hostname=self.config["hostname"], port=self.config["http_port"], genus_sp=self.genus_species, Genus=self.genus_uppercase, species=self.species, id="{id}"))
workflow_dict["steps"]["3"]["tool_state"] = workflow_dict["steps"]["3"]["tool_state"].replace("__FULL_NAME__", self.full_name).replace("__UNIQUE_ID__", self.abbreviation)
# Import the workflow in galaxy as a dict

Arthur Le Bars
committed
self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

Arthur Le Bars
committed
# Get its attributes
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)

Arthur Le Bars
committed
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_attributes[0]["id"] # Index 0 is the most recently imported workflow (the one we want)

Arthur Le Bars
committed
show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)

Arthur Le Bars
committed
# Check if the workflow is found

Arthur Le Bars
committed
try:

Arthur Le Bars
committed
logging.debug("Workflow ID: %s" % workflow_id)

Arthur Le Bars
committed
except bioblend.ConnectionError:

Arthur Le Bars
committed
logging.warning("Error retrieving workflow attributes for workflow %s" % workflow_name)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it

Arthur Le Bars
committed
self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
history_id=self.history_id,
params=workflow_parameters,
inputs=datamap,

Arthur Le Bars
committed
inputs_by="",
allow_tool_state_corrections=True)

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance ({1}) for the jobs state".format(workflow_name, self.instance_url))
def get_invocation_report(self, workflow_name):
"""
Debugging method for workflows

Arthur Le Bars
committed
Simply logs and returns a report of the previous workflow invocation (execution of a workflow in
the instance via the API)
:param workflow_name:
:return:
"""
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)

Arthur Le Bars
committed
workflow_id = workflow_attributes[1]["id"] # Most recently imported workflow (index 1 in the list)
invocations = self.instance.workflows.get_invocations(workflow_id=workflow_id)

Arthur Le Bars
committed
invocation_id = invocations[1]["id"] # Most recent invocation
invocation_report = self.instance.invocations.get_invocation_report(invocation_id=invocation_id)
logging.debug(invocation_report)

Arthur Le Bars
committed
return invocation_report
Find datasets in a library, get their ID and import them into the current history if they are not already
:return:
"""
# Instanciate the instance
gio = GalaxyInstance(url=self.instance_url,

Arthur Le Bars
committed
email=self.config["galaxy_default_admin_email"],
password=self.config["galaxy_default_admin_password"])
prj_lib = gio.libraries.get_previews(name="Project Data")
library_id = prj_lib[0].id
instance_source_data_folders = self.instance.libraries.get_folders(library_id=str(library_id))
folders_ids = {}
current_folder_name = ""
# Loop over the folders in the library and map folders names to their IDs
for i in instance_source_data_folders:
for k, v in i.items():
if k == "name":
folders_ids[v] = 0
current_folder_name = v
if k == "id":
folders_ids[current_folder_name] = v
# Iterating over the folders to find datasets and map datasets to their IDs
logging.info("Datasets IDs: ")
for k, v in folders_ids.items():
if k == "/genome":
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
final_sub_folder_content = self.instance.folders.show_folder(folder_id=sub_folder_content["folder_contents"][0]["id"], contents=True)
for k2, v2 in final_sub_folder_content.items():
for e in v2:
if type(e) == dict:
if e["name"].endswith(".fa"):
self.datasets["genome_file"] = e["ldda_id"]

Arthur Le Bars
committed
logging.debug("\t" + e["name"] + ": " + e["ldda_id"])
if k == "/annotation":
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
final_sub_folder_content = self.instance.folders.show_folder(folder_id=sub_folder_content["folder_contents"][0]["id"], contents=True)
for k2, v2 in final_sub_folder_content.items():
for e in v2:
if type(e) == dict:

Arthur Le Bars
committed
# TODO: manage genome and ogs versions (differentiate between the correct folders using self.config)
if "transcripts" in e["name"]:
self.datasets["transcripts_file"] = e["ldda_id"]

Arthur Le Bars
committed
logging.debug("\t" + e["name"] + ": " + e["ldda_id"])
elif "proteins" in e["name"]:
self.datasets["proteins_file"] = e["ldda_id"]

Arthur Le Bars
committed
logging.debug("\t" + e["name"] + ": " + e["ldda_id"])
elif "gff" in e["name"]:
self.datasets["gff_file"] = e["ldda_id"]

Arthur Le Bars
committed
logging.debug("\t" + e["name"] + ": " + e["ldda_id"])
logging.info("Uploading datasets into history %s" % self.history_id)
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["genome_file"])
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["gff_file"])
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["transcripts_file"])
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["proteins_file"])
_datasets = self.instance.datasets.get_datasets()
with open(os.path.join(self.main_dir, "datasets_ids.json"), "w") as datasets_ids_outfile:
datasets_ids_outfile.write(str(_datasets))
return {"history_id": self.history_id, "library_id": library_id, "datasets": self.datasets}
def get_datasets_hda_ids(self):
"""
Get the hda IDs of the datasets imported into an history
The most "recent" imports will be prioritized

Arthur Le Bars
committed
As some tools will not work using the input datasets ldda IDs we need to retrieve the datasets IDs imported
into an history
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
:return:
"""
# List of all datasets in the instance (including outputs from jobs)
# "limit" and "offset" options *may* be used to restrict search to specific datasets but since
# there is no way to know which imported datasets are the correct ones depending on history content
# it's not currently used
history_datasets_li = self.instance.datasets.get_datasets()
genome_dataset_hda_id, gff_dataset_hda_id, transcripts_dataset_hda_id, proteins_datasets_hda_id = None, None, None, None
genome_dataset_hda_id = history_datasets_li[3]["id"]
gff_dataset_hda_id = history_datasets_li[2]["id"]
transcripts_dataset_hda_id = history_datasets_li[1]["id"]
proteins_datasets_hda_id = history_datasets_li[0]["id"]
for dataset_dict in history_datasets_li[0:3]:
# Datasets imports should be the last jobs in history if the function calls are in correct order
# If not, add the function call "get_datasets_hda_ids()" just after "import_datasets_into_history()"
if dataset_dict["name"].endswith("proteins.fa"):
proteins_datasets_hda_id = dataset_dict["id"]
logging.debug("Proteins dataset hda ID: %s" % proteins_datasets_hda_id)
elif dataset_dict["name"].endswith("transcripts-gff.fa"):
transcripts_dataset_hda_id = dataset_dict["id"]
logging.debug("Transcripts dataset hda ID: %s" % transcripts_dataset_hda_id)
elif dataset_dict["name"].endswith(".gff"):
gff_dataset_hda_id = dataset_dict["id"]
logging.debug("gff dataset hda ID: %s" % gff_dataset_hda_id)
else:
genome_dataset_hda_id = dataset_dict["id"]
logging.debug("Genome dataset hda id: %s" % genome_dataset_hda_id)
# Return a dict made of the hda ids
return{"genome_hda_id": genome_dataset_hda_id, "transcripts_hda_id": transcripts_dataset_hda_id,
"proteins_hda_id": proteins_datasets_hda_id, "gff_hda_id": gff_dataset_hda_id}

Arthur Le Bars
committed
def get_organism_and_analyses_ids(self):
"""
Retrieve current organism ID and OGS and genome chado analyses IDs (needed to run some tools as Tripal/Chado
doesn't accept organism/analyses names as valid inputs
WARNING: It is mandatory to call this function before invoking a workflow

Arthur Le Bars
committed
:return:
"""
# Get the ID for the current organism in chado
org = self.instance.tools.run_tool(

Arthur Le Bars
committed
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",

Arthur Le Bars
committed
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})

Arthur Le Bars
committed
time.sleep(3)
# Run tool again (sometimes the tool doesn't return anything despite the organism already being in the db)
org = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})
time.sleep(10)

Arthur Le Bars
committed
org_job_out = org["outputs"][0]["id"]
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
try:
org_output = json.loads(org_json_output)[0]
self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
except IndexError:

Arthur Le Bars
committed
logging.debug("No organism matching " + self.full_name + " exists in the instance's chado database")

Arthur Le Bars
committed
# Get the ID for the OGS analysis in chado
ogs_analysis = self.instance.tools.run_tool(

Arthur Le Bars
committed
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",

Arthur Le Bars
committed
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version})

Arthur Le Bars
committed
ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"]
ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out)
try:
ogs_analysis_output = json.loads(ogs_analysis_json_output)[0]
self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"])
except IndexError:
logging.debug("no matching OGS analysis exists in the instance's chado database")
# Get the ID for the genome analysis in chado
genome_analysis = self.instance.tools.run_tool(

Arthur Le Bars
committed
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",

Arthur Le Bars
committed
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version})

Arthur Le Bars
committed
genome_analysis_job_out = genome_analysis["outputs"][0]["id"]
genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out)
try:
genome_analysis_output = json.loads(genome_analysis_json_output)[0]
self.genome_analysis_id = str(genome_analysis_output["analysis_id"])
except IndexError:
logging.debug("no matching genome analysis exists in the instance's chado database")

Arthur Le Bars
committed
return {"org_id": self.org_id, "genome_analysis_id": self.genome_analysis_id, "ogs_analysis_id": self.ogs_analysis_id}

Arthur Le Bars
committed
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction "
"with galaxy instances for GGA"
", following the protocol @ "
"http://gitlab.sb-roscoff.fr/abims/e-infra/gga")
parser.add_argument("input",
type=str,
help="Input file (yml)")
parser.add_argument("-v", "--verbose",
help="Increase output verbosity",

Arthur Le Bars
committed
action="store_true")
parser.add_argument("--config",
type=str,
help="Config path, default to the 'config' file inside the script repository")
parser.add_argument("--main-directory",
type=str,
help="Where the stack containers will be located, defaults to working directory")

Arthur Le Bars
committed

Arthur Le Bars
committed
parser.add_argument("--workflow", "-w",
type=str,
help="Worfklow to run")

Arthur Le Bars
committed
parser.add_argument("--setup",
help="Initialize the species history by adding the organism and associated analyses to the "
"chado database",
action="store_true")

Arthur Le Bars
committed
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
logging.getLogger("urllib3").setLevel(logging.INFO)
logging.getLogger("bioblend").setLevel(logging.INFO)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Parsing the config file if provided, using the default config otherwise
if not args.config:
args.config = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), "config")
else:
args.config = os.path.abspath(args.config)
if not args.main_directory:
args.main_directory = os.getcwd()
else:
args.main_directory = os.path.abspath(args.main_directory)
sp_dict_list = utilities.parse_input(args.input)

Arthur Le Bars
committed
for sp_dict in sp_dict_list:

Arthur Le Bars
committed
# Creating an instance of the RunWorkflow object for the current organism

Arthur Le Bars
committed
run_workflow_for_current_organism = RunWorkflow(parameters_dictionary=sp_dict)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Checking if user specified a workflow to run
if not args.workflow:
logging.critical("No workflow specified, exiting")
sys.exit()
else:
workflow = os.path.abspath(args.workflow)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Verifying the galaxy container is running
if utilities.check_galaxy_state(genus_lowercase=run_workflow_for_current_organism.genus_lowercase,
species=run_workflow_for_current_organism.species,
script_dir=run_workflow_for_current_organism.script_dir):
# Starting
logging.info("run_workflow.py called for %s" % run_workflow_for_current_organism.full_name)
# Setting some of the instance attributes
run_workflow_for_current_organism.main_dir = args.main_directory
run_workflow_for_current_organism.species_dir = os.path.join(run_workflow_for_current_organism.main_dir,
run_workflow_for_current_organism.genus_species +
"/")
# Parse the config yaml file
run_workflow_for_current_organism.config = utilities.parse_config(args.config)
# Set the instance url attribute
for env_variable, value in run_workflow_for_current_organism.config.items():

Arthur Le Bars
committed
if env_variable == "hostname":
run_workflow_for_current_organism.instance_url = "http://{0}:8888/sp/{1}/galaxy/".format(
value, run_workflow_for_current_organism.genus_species)

Arthur Le Bars
committed
break
else:
run_workflow_for_current_organism.instance_url = "http://localhost:8888/sp/{0}_{1}/galaxy/".format(
run_workflow_for_current_organism.genus_lowercase,
run_workflow_for_current_organism.species)

Arthur Le Bars
committed
# If input workflow is Chado_load_Tripal_synchronize.ga
if "Chado_load_Tripal_synchronize" in str(workflow):
logging.info("Executing workflow 'Chado_load_Tripal_synchronize'")
run_workflow_for_current_organism.connect_to_instance()
run_workflow_for_current_organism.set_get_history()
# run_workflow_for_current_organism.get_species_history_id()

Arthur Le Bars
committed
# Prepare the instance+history for the current organism (add organism and analyses in Chado)

Arthur Le Bars
committed
# (although it should pose no problem as the "Chado add" refuses to duplicate an analysis/organism anyway)

Arthur Le Bars
committed
if args.setup:
run_workflow_for_current_organism.prepare_history()

Arthur Le Bars
committed
# Get the attributes of the instance and project data files
run_workflow_for_current_organism.get_instance_attributes()
run_workflow_for_current_organism.get_organism_and_analyses_ids()

Arthur Le Bars
committed
# Import datasets into history and retrieve their hda IDs

Arthur Le Bars
committed
run_workflow_for_current_organism.import_datasets_into_history()
run_workflow_for_current_organism.get_datasets_hda_ids()

Arthur Le Bars
committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# Explicit workflow parameter names
GENOME_FASTA_FILE = "0"
GFF_FILE = "1"
PROTEINS_FASTA_FILE = "2"
TRANSCRIPTS_FASTA_FILE = "3"
LOAD_FASTA_IN_CHADO = "4"
LOAD_GFF_IN_CHADO = "5"
SYNC_ORGANISM_INTO_TRIPAL = "6"
SYNC_GENOME_ANALYSIS_INTO_TRIPAL = "7"
SYNC_OGS_ANALYSIS_INTO_TRIPAL = "8"
SYNC_FEATURES_INTO_TRIPAL = "9"
workflow_parameters = {}
workflow_parameters[GENOME_FASTA_FILE] = {}
workflow_parameters[GFF_FILE] = {}
workflow_parameters[PROTEINS_FASTA_FILE] = {}
workflow_parameters[TRANSCRIPTS_FASTA_FILE] = {}
workflow_parameters[LOAD_FASTA_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
"analysis_id": run_workflow_for_current_organism.genome_analysis_id,
"do_update": "true"}
# Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado
# WARNING: It is safer to never update it and just change the genome/ogs versions in the config
workflow_parameters[LOAD_GFF_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
"analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
workflow_parameters[SYNC_ORGANISM_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
workflow_parameters[SYNC_GENOME_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
workflow_parameters[SYNC_OGS_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.genome_analysis_id}
workflow_parameters[SYNC_FEATURES_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
# Datamap for input datasets - dataset source (type): ldda (LibraryDatasetDatasetAssociation)
run_workflow_for_current_organism.datamap = {}
run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["genome_file"]}
run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["gff_file"]}
run_workflow_for_current_organism.datamap[PROTEINS_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["proteins_file"]}
run_workflow_for_current_organism.datamap[TRANSCRIPTS_FASTA_FILE] = {"src": "ldda", "id": run_workflow_for_current_organism.datasets["transcripts_file"]}
run_workflow_for_current_organism.datamap = {}
run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "ldda", "id":
run_workflow_for_current_organism.datasets["genome_file"]}
run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "ldda",
"id": run_workflow_for_current_organism.datasets[
"gff_file"]}
# Run the Chado load Tripal sync workflow with the parameters set above
run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
workflow_parameters=workflow_parameters,
datamap=run_workflow_for_current_organism.datamap,
workflow_name="Chado load Tripal synchronize")

Arthur Le Bars
committed

Arthur Le Bars
committed
# Jbrowse creation workflow
elif "Jbrowse" in str(workflow):

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.info("Executing workflow 'Jbrowse'")

Arthur Le Bars
committed

Arthur Le Bars
committed
run_workflow_for_current_organism.connect_to_instance()
run_workflow_for_current_organism.set_get_history()
run_workflow_for_current_organism.get_instance_attributes()
run_workflow_for_current_organism.get_organism_and_analyses_ids()

Arthur Le Bars
committed
# Import datasets into history and get their hda IDs

Arthur Le Bars
committed
run_workflow_for_current_organism.import_datasets_into_history()

Arthur Le Bars
committed
hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids() # Note: only call this function AFTER calling "import_datasets_into_history()"
# Debugging
# run_workflow_for_current_organism.get_invocation_report(workflow_name="Jbrowse")

Arthur Le Bars
committed

Arthur Le Bars
committed
GENOME_FASTA_FILE = "0"
GFF_FILE = "1"
ADD_JBROWSE = "2"
ADD_ORGANISM_TO_JBROWSE = "3"
workflow_parameters = {}
workflow_parameters[GENOME_FASTA_FILE] = {}
workflow_parameters[GFF_FILE] = {}

Arthur Le Bars
committed
workflow_parameters[ADD_JBROWSE] = {}
workflow_parameters[ADD_ORGANISM_TO_JBROWSE] = {}

Arthur Le Bars
committed
run_workflow_for_current_organism.datamap = {}
run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id": hda_ids["genome_hda_id"]}
run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda", "id": hda_ids["gff_hda_id"]}

Arthur Le Bars
committed
# run_workflow_for_current_organism.replace_placeholders_workflow(workflow_str=json.dumps(workflow))

Arthur Le Bars
committed
# Run the jbrowse creation workflow
run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
workflow_parameters=workflow_parameters,
datamap=run_workflow_for_current_organism.datamap,
workflow_name="Jbrowse")

Arthur Le Bars
committed
else:
logging.critical("The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.full_name)