Newer
Older
#!/usr/bin/python
# -*- coding: utf-8 -*-

Arthur Le Bars
committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import bioblend
import bioblend.galaxy.objects
from bioblend import galaxy
import argparse
import os
import subprocess
import logging
import sys
import yaml
import re
from gga_autoload.gga_load_data import metadata_generator
"""
deploy_stacks.py
Usage: $ python3 deploy_stacks.py -i example.yml [OPTIONS]
"""
def parse_input(input_file):
"""
Parse the yml input file to extract data to create the SpeciesData objects
Return a list of dictionaries. Each dictionary contains data tied to a species
:param input_file:
:return:
"""
parsed_sp_dict_list = []
if str(input_file).endswith("yml") or str(input_file).endswith("yaml"):
logging.debug("Input format used: YAML")
else:
logging.critical("Error, please input a YAML file")
sys.exit()
with open(input_file, 'r') as stream:
try:
yaml_dict = yaml.safe_load(stream)
for k, v in yaml_dict.items():
if k == "config":
pass
parsed_sp_dict_list.append(v)
except yaml.YAMLError as exit_code:
logging.critical(exit_code + " (YAML input file might be incorrect)")
sys.exit()
return parsed_sp_dict_list
class RunWorkflow:
"""
Run a workflow into the galaxy instance's history of a given species
"""
def __init__(self, parameters_dictionary):
self.parameters_dictionary = parameters_dictionary
self.species = parameters_dictionary["description"]["species"]
self.genus = parameters_dictionary["description"]["genus"]
self.strain = parameters_dictionary["description"]["strain"]
self.sex = parameters_dictionary["description"]["sex"]
self.common = parameters_dictionary["description"]["common_name"]
self.date = datetime.today().strftime("%Y-%m-%d")
self.origin = parameters_dictionary["description"]["origin"]
self.performed = parameters_dictionary["data"]["performed_by"]
if parameters_dictionary["data"]["genome_version"] == "":
self.genome_version = "1.0"
else:
self.genome_version = parameters_dictionary["data"]["genome_version"]
if parameters_dictionary["data"]["ogs_version"] == "":
self.ogs_version = "1.0"
else:
self.ogs_version = parameters_dictionary["data"]["ogs_version"]
self.genus_lowercase = self.genus[0].lower() + self.genus[1:]
self.genus_uppercase = self.genus[0].upper() + self.genus[1:]
self.species_folder_name = "_".join([self.genus_lowercase, self.species, self.strain, self.sex])
self.full_name = " ".join([self.genus_uppercase, self.species, self.strain, self.sex])
self.abbreviation = " ".join([self.genus_lowercase[0], self.species, self.strain, self.sex])
self.genus_species = self.genus_lowercase + "_" + self.species
self.instance_url = "http://scratchgmodv1:8888/sp/" + self.genus_lowercase + "_" + self.species + "/galaxy/"
# Testing with localhost/scratchgmodv1
self.instance = None
self.history_id = None
self.library_id = None
self.script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))
self.main_dir = None
self.species_dir = None
self.org_id = None
self.genome_analysis_id = None
self.ogs_analysis_id = None
self.tool_panel = None
self.datasets = dict()
self.source_files = dict()
self.workflow_name = None
self.metadata = dict()
self.api_key = "master"
if parameters_dictionary["data"]["parent_directory"] == "" or parameters_dictionary["data"]["parent_directory"] == "/path/to/closest/parent/dir":
self.source_data_dir = "/projet/sbr/phaeoexplorer/" # Testing path for phaeoexplorer data
else:
self.source_data_dir = parameters_dictionary["data"]["parent_directory"]
# Directory/subdirectories where data files are located (fasta, gff, ...)
self.do_update = False
# Update the instance (in histories corresponding to the input) instead of creating a new one
self.api_key = "master"
# API key used to communicate with the galaxy instance. Cannot be used to do user-tied actions
self.species_name_regex_litteral = "(?=\w*V)(?=\w*A)(?=\w*R)(?=\w*I)(?=\w*A)(?=\w*B)(?=\w*L)(?=\w*E)\w+" # Placeholder re
def get_species_history_id(self):
"""
Set and return the current species history id in its galaxy instance
:return:
"""
histories = self.instance.histories.get_histories(name=str(self.full_name))
self.history_id = histories[0]["id"]
self.instance.histories.show_history(history_id=self.history_id)
return self.history_id
def create_species_history(self):
histories = self.instance.histories.get_histories(name=str(self.full_name))
print("\n" + str(histories) + "\n" + self.full_name + "\n")
if not histories:
self.instance.histories.create_history(name="FOO")
print("Created history!")
def get_instance_attributes(self):
"""
retrieves instance attributes:
- working history ID
- libraries ID (there should only be one library!)
- datasets IDs
:return:
"""
histories = self.instance.histories.get_histories(name=str(self.full_name))
self.history_id = histories[0]["id"]
logging.debug("history ID: " + self.history_id)
libraries = self.instance.libraries.get_libraries() # normally only one library
self.library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library
logging.debug("library ID: " + self.history_id)
instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id)
folders_ids = {}
current_folder_name = ""
for i in instance_source_data_folders:
for k, v in i.items():
if k == "name":
folders_ids[v] = 0
current_folder_name = v
if k == "id":
folders_ids[current_folder_name] = v
logging.info("Folders and datasets IDs: ")
self.datasets = dict()
for k, v in folders_ids.items():
logging.info("\t" + k + ": " + v)
if k == "/genome":
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
for k2, v2 in sub_folder_content.items():
for e in v2:
if type(e) == dict:
if e["name"].endswith(".fa"):
self.datasets["genome_file"] = e["ldda_id"]
logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
elif k == "/annotation/" + self.genus_species:
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)
for k2, v2 in sub_folder_content.items():
for e in v2:
if type(e) == dict:
# TODO: manage several files of the same type and manage versions
if e["name"].endswith("transcripts-gff.fa"):
self.datasets["transcripts_file"] = e["ldda_id"]
logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
elif e["name"].endswith("proteins.fasta"):
self.datasets["proteins_file"] = e["ldda_id"]
logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
elif e["name"].endswith(".gff"):
self.datasets["gff_file"] = e["ldda_id"]
logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
elif e["name"].endswith("MALE"):
self.datasets["gff_file"] = e["ldda_id"]
logging.info("\t\t" + e["name"] + ": " + e["ldda_id"])
def init_instance(self):
"""
Galaxy instance startup in preparation for running workflows
- remove Homo sapiens from the chado database.
- add organism and analyses into the chado database --> separate
- get any other existing organisms IDs before updating the galaxy instance --> separate
TODO: move the library and analysis/data stuff to a separate function
:return:
"""
self.connect_to_instance()
self.get_species_history_id()
histories = self.instance.histories.get_histories(name=str(self.full_name))
# Create the first history
if not histories:
self.instance.histories.create_history(name=str(self.full_name))
self.history_id = histories[0]["id"]
logging.debug("history ID: " + self.history_id)
# libraries = self.instance.libraries.get_libraries() # routine check: one library
# self.library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library
logging.debug("library ID: " + self.history_id)
instance_source_data_folders = self.instance.libraries.get_folders(library_id=self.library_id)
# Delete Homo sapiens from Chado database
logging.debug("Getting 'Homo sapiens' ID in instance's chado database")
get_sapiens_id_job = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.2",
history_id=self.history_id,
tool_inputs={"genus": "Homo", "species": "sapiens"})
get_sapiens_id_job_output = get_sapiens_id_job["outputs"][0]["id"]
get_sapiens_id_json_output = self.instance.datasets.download_dataset(dataset_id=get_sapiens_id_job_output)
try:
logging.debug("Deleting Homo 'sapiens' in the instance's chado database")
get_sapiens_id_final_output = json.loads(get_sapiens_id_json_output)[0]
sapiens_id = str(
get_sapiens_id_final_output["organism_id"]) # needs to be str to be recognized by the chado tool
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_delete_organisms/organism_delete_organisms/2.3.2",
history_id=self.history_id,
tool_inputs={"organism": str(sapiens_id)})
except bioblend.ConnectionError:
logging.debug("Homo sapiens isn't in the instance's chado database")
except IndexError:
logging.debug("Homo sapiens isn't in the instance's chado database")
pass
# TODO: the following actions should be done in a separate function (in case if the user wants to do everything him/herself -- for EOSC)
# Add organism (species) to chado
logging.info("Adding organism to the instance's chado database")
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.2",
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus,
"species": self.species,
"common": self.common})
# Add OGS analysis to chado
logging.info("Adding OGS analysis to the instance's chado database")
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2",
history_id=self.history_id,
tool_inputs={"name": self.genus + " " + self.species + " OGS" + self.ogs_version,
"program": "Performed by Genoscope",
"programversion": str("OGS" + self.ogs_version),
"sourcename": "Genoscope",
"date_executed": self.date})
# Add genome analysis to chado
logging.info("Adding genome analysis to the instance's chado database")
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.2",
history_id=self.history_id,
tool_inputs={"name": self.genus + " " + self.species + " genome v" + self.genome_version,
"program": "Performed by Genoscope",
"programversion": str("genome v" + self.genome_version),
"sourcename": "Genoscope",
"date_executed": self.date})
self.get_organism_and_analyses_ids()
logging.info("Finished initializing instance")
def run_workflow(self, workflow_name, workflow_parameters, datamap):
"""
Run the "main" workflow in the galaxy instance
- import data to library
- load fasta and gff
- sync with tripal
- add jbrowse + organism
- fill in the tripal views
TODO: map tool name to step id
:param workflow_name:
:param workflow_parameters:
:param datamap:
:return:
"""
logging.debug("running workflow: " + str(workflow_name))
workflow_ga_file = self.main_dir + "Galaxy-Workflow-" + workflow_name + ".ga"
if self.strain != "":
custom_ga_file = "_".join([self.genus, self.species, self.strain]) + "_workflow.ga"
custom_ga_file_path = os.path.abspath(custom_ga_file)
else:
custom_ga_file = "_".join([self.genus, self.species]) + "_workflow.ga"
custom_ga_file_path = os.path.abspath(custom_ga_file)
with open(workflow_ga_file, 'r') as ga_in_file:
workflow = str(ga_in_file.readlines())
# ugly fix for the jbrowse parameters
workflow = workflow.replace('{\\\\\\\\\\\\"unique_id\\\\\\\\\\\\": \\\\\\\\\\\\"UNIQUE_ID\\\\\\\\\\\\"}',
str('{\\\\\\\\\\\\"unique_id\\\\\\\\\\\\": \\\\\\\\\\\\"' + self.genus + " " + self.species) + '\\\\\\\\\\\\"')
workflow = workflow.replace('\\\\\\\\\\\\"name\\\\\\\\\\\\": \\\\\\\\\\\\"NAME\\\\\\\\\\\\"',
str('\\\\\\\\\\\\"name\\\\\\\\\\\\": \\\\\\\\\\\\"' + self.genus.lower()[0] + self.species) + '\\\\\\\\\\\\"')
workflow = workflow.replace("\\\\", "\\") # to restore the correct amount of backslashes in the workflow string before import
# test
workflow = workflow.replace('http://localhost/sp/genus_species/feature/Genus/species/mRNA/{id}',
"http://localhost/sp/" + self.genus_lowercase+ "_" + self.species + "/feature/" + self.genus + "/mRNA/{id}")
# production
# workflow = workflow.replace('http://localhost/sp/genus_species/feature/Genus/species/mRNA/{id}',
# "http://abims--gga.sb-roscoff.fr/sp/" + self.genus_lowercase + "_" + self.species + "/feature/" + self.genus + "/mRNA/{id}")
workflow = workflow[2:-2] # if the line under doesn't output a correct json
# workflow = workflow[:-2] # if the line above doesn't output a correct json
workflow_dict = json.loads(workflow)
self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
self.workflow_name = workflow_name
workflow_attributes = self.instance.workflows.get_workflows(name=self.workflow_name)
workflow_id = workflow_attributes[0]["id"]
show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)
logging.debug("Workflow ID: " + workflow_id)
logging.debug("Inputs:")
logging.debug(show_workflow["Inputs"])
self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
history_id=self.history_id,
params=workflow_parameters,
inputs=datamap,
inputs_by="")
self.instance.workflows.delete_workflow(workflow_id=workflow_id)
def get_organism_and_analyses_ids(self):
"""
Retrieve current organism ID and OGS and genome chado analyses IDs (needed to run some tools as Tripal/Chado
doesn't accept organism/analyses names as valid inputs
:return:
"""
# Get the ID for the current organism in chado
org = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.2",
history_id=self.history_id,
tool_inputs={"genus": self.genus, "species": self.species})
org_job_out = org["outputs"][0]["id"]
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
try:
org_output = json.loads(org_json_output)[0]
self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
except IndexError:
logging.debug("no organism matching " + self.full_name + " exists in the instance's chado database")
# Get the ID for the OGS analysis in chado
ogs_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.2",
history_id=self.history_id,
tool_inputs={"name": self.genus + " " + self.species + " OGS" + self.ogs_version})
ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"]
ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out)
try:
ogs_analysis_output = json.loads(ogs_analysis_json_output)[0]
self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"])
except IndexError:
logging.debug("no matching OGS analysis exists in the instance's chado database")
# Get the ID for the genome analysis in chado
genome_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.2",
history_id=self.history_id,
tool_inputs={"name": self.genus + " " + self.species + " genome v" + self.genome_version})
genome_analysis_job_out = genome_analysis["outputs"][0]["id"]
genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out)
try:
genome_analysis_output = json.loads(genome_analysis_json_output)[0]
self.genome_analysis_id = str(genome_analysis_output["analysis_id"])
except IndexError:
logging.debug("no matching genome analysis exists in the instance's chado database")
def connect_to_instance(self):
"""
TODO: move in init/access
TODO: password
Test the connection to the galaxy instance for the current organism
Exit if it cannot connect to the instance
"""
self.instance = galaxy.GalaxyInstance(url=self.instance_url, email="gga@sb-roscoff.fr", password="password",
verify=False)
logging.info("Connecting to the galaxy instance ...")
try:
self.instance.histories.get_histories()
self.tool_panel = self.instance.tools.get_tool_panel()
except bioblend.ConnectionError:
logging.critical("Cannot connect to galaxy instance @ " + self.instance_url)
sys.exit()
else:
logging.info("Successfully connected to galaxy instance @ " + self.instance_url)
self.instance.histories.create_history(name="FOO")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction "
"with galaxy instances for GGA"
", following the protocol @ "
"http://gitlab.sb-roscoff.fr/abims/e-infra/gga")
parser.add_argument("input",
type=str,
help="Input file (yml)")
parser.add_argument("-v", "--verbose",
help="Increase output verbosity",
action="store_false")
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
logging.info("Start")
sp_dict_list = parse_input(args.input)
for sp_dict in sp_dict_list:
o = RunWorkflow(parameters_dictionary=sp_dict)
o.main_dir = os.path.abspath(args.dir)
if args.init_instance:
logging.info(" Initializing the galaxy instance")
o.init_instance()
o.get_instance_attributes()
# metadata[genus_species_strain_sex]["initialized"] = True
if args.load_data:
logging.info("Loading data into galaxy")
# o.load_data()
# metadata[genus_species_strain_sex]["data_loaded_in_instance"] = True
if args.run_main:
logging.info("Running main workflow")
o.get_organism_and_analyses_ids()
workflow_parameters = dict()
workflow_parameters["0"] = {}
workflow_parameters["1"] = {}
workflow_parameters["2"] = {}
workflow_parameters["3"] = {}
workflow_parameters["4"] = {"organism": al.org_id,
"analysis_id": al.genome_analysis_id,
"do_update": "true"}
workflow_parameters["5"] = {"organism": al.org_id,
"analysis_id": al.ogs_analysis_id}
workflow_parameters["6"] = {"organism_id": al.org_id}
workflow_parameters["7"] = {"analysis_id": al.ogs_analysis_id}
workflow_parameters["8"] = {"analysis_id": al.genome_analysis_id}
workflow_parameters["9"] = {"organism_id": al.org_id}
workflow_parameters["10"] = {}
workflow_parameters["11"] = {}
o.datamap = dict()
o.datamap["0"] = {"src": "hda", "id": al.datasets["genome_file"]}
o.datamap["1"] = {"src": "hda", "id": al.datasets["gff_file"]}
o.datamap["2"] = {"src": "hda", "id": al.datasets["proteins_file"]}
o.datamap["3"] = {"src": "hda", "id": al.datasets["transcripts_file"]}
o.run_workflow(workflow_name="main", workflow_parameters=workflow_parameters, datamap=al.datamap)
# metadata[genus_species_strain_sex]["workflows_run"] = metadata[genus_species_strain_sex]["workflows_run"].append("main")