Newer
Older

Arthur Le Bars
committed
#!/usr/bin/env python3

Arthur Le Bars
committed
import bioblend
import bioblend.galaxy.objects
import argparse
import os
import logging
import sys

Arthur Le Bars
committed
import json

Arthur Le Bars
committed
import time

Arthur Le Bars
committed

Arthur Le Bars
committed
from bioblend import galaxy

Arthur Le Bars
committed
import utilities
import speciesData

Arthur Le Bars
committed
"""

Arthur Le Bars
committed

Arthur Le Bars
committed
Usage: $ python3 gga_init.py -i input_example.yml --config [config file] [OPTIONS]

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
"""
Run a workflow into the galaxy instance's history of a given species

Arthur Le Bars
committed

Arthur Le Bars
committed
This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,

Arthur Le Bars
committed
provided the user creates their own workflow in a .ga format, and change the set_parameters function

Arthur Le Bars
committed
to have the correct parameters for their workflow

Arthur Le Bars
committed

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
def set_get_history(self):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Create or set the working history to the current species one

Arthur Le Bars
committed
:return:
"""

Arthur Le Bars
committed
try:
histories = self.instance.histories.get_histories(name=str(self.full_name))
self.history_id = histories[0]["id"]
except IndexError:
logging.info("Creating history for %s" % self.full_name)
self.instance.histories.create_history(name=str(self.full_name))
histories = self.instance.histories.get_histories(name=str(self.full_name))
self.history_id = histories[0]["id"]

Arthur Le Bars
committed
return self.history_id
def get_instance_attributes(self):
"""
retrieves instance attributes:
- working history ID
- libraries ID (there should only be one library!)
- datasets IDs
:return:
"""

Arthur Le Bars
committed

Arthur Le Bars
committed
self.set_get_history()

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.debug("History ID: %s" % self.history_id)

Arthur Le Bars
committed
libraries = self.instance.libraries.get_libraries() # normally only one library
library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library

Arthur Le Bars
committed
logging.debug("Library ID: %s" % self.library_id)
instance_source_data_folders = self.instance.libraries.get_folders(library_id=library_id)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Access folders via their absolute path
genome_folder = self.instance.libraries.get_folders(library_id=library_id, name="/genome/" + str(self.species_folder_name) + "/v" + str(self.genome_version))
annotation_folder = self.instance.libraries.get_folders(library_id=library_id, name="/annotation/" + str(self.species_folder_name) + "/OGS" + str(self.ogs_version))

Arthur Le Bars
committed
# Get their IDs
genome_folder_id = genome_folder[0]["id"]
annotation_folder_id = annotation_folder[0]["id"]
# Get the content of the folders
genome_folder_content = self.instance.folders.show_folder(folder_id=genome_folder_id, contents=True)
annotation_folder_content = self.instance.folders.show_folder(folder_id=annotation_folder_id, contents=True)
# Find genome folder datasets
genome_fasta_ldda_id = genome_folder_content["folder_contents"][0]["ldda_id"]
annotation_gff_ldda_id, annotation_proteins_ldda_id, annotation_transcripts_ldda_id = None, None, None

Arthur Le Bars
committed
# Several dicts in the annotation folder content (one dict = one file)
for k, v in annotation_folder_content.items():
if k == "folder_contents":
for d in v:
if "proteins" in d["name"]:
annotation_proteins_ldda_id = d["ldda_id"]
if "transcripts" in d["name"]:
annotation_transcripts_ldda_id = d["ldda_id"]
if ".gff" in d["name"]:
annotation_gff_ldda_id = d["ldda_id"]

Arthur Le Bars
committed
# Minimum datasets to populate tripal views --> will not work if these files are not assigned in the input file

Arthur Le Bars
committed
self.datasets["genome_file"] = genome_fasta_ldda_id
self.datasets["gff_file"] = annotation_gff_ldda_id
self.datasets["proteins_file"] = annotation_proteins_ldda_id
self.datasets["transcripts_file"] = annotation_transcripts_ldda_id
return {"history_id": self.history_id, "library_id": library_id, "datasets": self.datasets}

Arthur Le Bars
committed

Arthur Le Bars
committed
def connect_to_instance(self):
"""
Test the connection to the galaxy instance for the current organism
Exit if we cannot connect to the instance
"""
logging.info("Connecting to the galaxy instance (%s)" % self.instance_url)

Arthur Le Bars
committed
self.instance = galaxy.GalaxyInstance(url=self.instance_url,

Arthur Le Bars
committed
email=self.config["galaxy_default_admin_email"],
password=self.config["galaxy_default_admin_password"]

Arthur Le Bars
committed
)

Arthur Le Bars
committed
try:
self.instance.histories.get_histories()
except bioblend.ConnectionError:
logging.critical("Cannot connect to galaxy instance (%s) " % self.instance_url)

Arthur Le Bars
committed
sys.exit()
else:
logging.info("Successfully connected to galaxy instance (%s) " % self.instance_url)

Arthur Le Bars
committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def install_changesets_revisions_from_workflow(self, workflow_path):
"""
Read a .ga file to extract the information about the different tools called.
Check if every tool is installed via a "show_tool".
If a tool is not installed (versions don't match), send a warning to the logger and install the required changeset (matching the tool version)
Doesn't do anything if versions match
:return:
"""
logging.info("Validating that installed tools versions and changesets match workflow versions")
# Load the workflow file (.ga) in a buffer
with open(workflow_path, 'r') as ga_in_file:
# Then store the decoded json dictionary
workflow_dict = json.load(ga_in_file)
# Look up every "step_id" looking for tools
for k, v in workflow_dict["steps"].items():
if v["tool_id"]:
# Get the descriptive dictionary of the installed tool (using the tool id in the workflow)
show_tool = self.instance.tools.show_tool(v["tool_id"])
# Check if an installed version matches the workflow tool version
# (If it's not installed, the show_tool version returned will be a default version with the suffix "XXXX+0")
if show_tool["version"] != v["tool_version"]:
# If it doesn't match, proceed to install of the correct changeset revision
print(show_tool)
# logging.warning("Tool versions don't match for {0} (changeset installed: {1} | changeset required: {2}). Installing changeset revision {3}...".format(v["tool_shed_repository"]["name"], show_tool["changeset_revision"], v["tool_shed_repository"]["changeset_revision"], v["tool_shed_repository"]["changeset_revision"]))
toolshed = "https://" + v["tool_shed_repository"]["tool_shed"]
name = v["tool_shed_repository"]["name"]
owner = v["tool_shed_repository"]["owner"]
changeset_revision = v["tool_shed_repository"]["changeset_revision"]
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
logging.info("Tools versions and changesets from workflow validated")
def install_changesets_revisions_for_individual_tools(self):

Arthur Le Bars
committed
"""
This function is used to verify that installed tools called outside workflows have the correct versions and changesets
If it finds versions don't match, will install the correct version + changeset in the instance
Doesn't do anything if versions match
:return:
"""
self.connect_to_instance()
logging.info("Validating installed individual tools versions and changesets")

Arthur Le Bars
committed
# Verify that the add_organism and add_analysis versions are correct in the toolshed
add_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.3")
add_analysis_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3")
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
get_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3")
get_analysis_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3")
# changeset for 2.3.3 has to be manually found because there is no way to get the wanted changeset of a non installed tool via bioblend
# except for workflows (.ga) that already contain the changeset revisions inside the steps ids
if get_organism_tool["version"] != "2.3.3":
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
changeset_revision = "b07279b5f3bf"
toolshed_dict = get_organism_tool["tool_shed_repository"]
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
if get_analysis_tool["version"] != "2.3.3":
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
changeset_revision = "c7be2feafd73"
toolshed_dict = changeset_revision["tool_shed_repository"]
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
if add_organism_tool["version"] != "2.3.3":
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
changeset_revision = "680a1fe3c266"
toolshed_dict = add_organism_tool["tool_shed_repository"]
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
if add_analysis_tool["version"] != "2.3.3":
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
changeset_revision = "43c36801669f"
toolshed_dict = add_analysis_tool["tool_shed_repository"]
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
logging.warning("Installing changeset revision %s for add_analysis" % changeset_revision)
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
logging.info("Individual tools versions and changesets validated")
def tripal_synchronize_organism_analyses(self):
"""
"""
show_tool_tripal_sync = self.instance.tools.show_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0", io_details=True)
org_sync = "toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0"
org_sync = self.instance.tools.run_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0",
history_id=self.history_id,
tool_inputs={"organism_id": "2"})
org_sync_job_out = org_sync["outputs"]
def add_organism_ogs_genome_analyses(self):
"""
Add OGS and genome vX analyses to Chado database
Required for Chado Load Tripal Synchronize workflow (which should be ran as the first workflow)
Called outside workflow for practical reasons (Chado add doesn't have an input link for analysis or organism)

Arthur Le Bars
committed
:return:

Arthur Le Bars
committed
"""
self.connect_to_instance()

Arthur Le Bars
committed
self.set_get_history()

Arthur Le Bars
committed
# We want the tools version default to be 2.3.3 at the moment
tool_version = "2.3.3"

Arthur Le Bars
committed
# Add organism (species) to chado
logging.info("Adding organism to the instance's chado database")

Arthur Le Bars
committed
if self.common == "" or self.common is None:

Arthur Le Bars
committed
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,

Arthur Le Bars
committed
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,

Arthur Le Bars
committed
"common": self.abbreviation})

Arthur Le Bars
committed
else:
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,

Arthur Le Bars
committed
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,

Arthur Le Bars
committed
"common": self.common})

Arthur Le Bars
committed

Arthur Le Bars
committed
# Add OGS analysis to chado
logging.info("Adding OGS analysis to the instance's chado database")
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/%s" % tool_version,

Arthur Le Bars
committed
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version,

Arthur Le Bars
committed
"program": "Performed by Genoscope",
"programversion": str(self.sex + " OGS" + self.ogs_version),

Arthur Le Bars
committed
"sourcename": "Genoscope",
"date_executed": self.date})
# Add genome analysis to chado
logging.info("Adding genome analysis to the instance's chado database")
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/%s" % tool_version,

Arthur Le Bars
committed
history_id=self.history_id,

Arthur Le Bars
committed
tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version,

Arthur Le Bars
committed
"program": "Performed by Genoscope",
"programversion": str(self.sex + "genome v" + self.genome_version),

Arthur Le Bars
committed
"sourcename": "Genoscope",
"date_executed": self.date})
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# # TODO: check output of get_organism --> if empty or wrong --> rerun --> else: go next
# # Get organism and analyses IDs (runtime inputs for workflow)
# time.sleep(3)
# # Get the ID for the current organism in chado
# org = self.instance.tools.run_tool(
# tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/%s" % tool_version,
# history_id=self.history_id,
# tool_inputs={"abbr": self.abbreviation,
# "genus": self.genus_uppercase,
# "species": self.chado_species_name,
# "common": self.common})
# time.sleep(3)
# # Run tool again (sometimes the tool doesn't return anything despite the organism already being in the db)
# org = self.instance.tools.run_tool(
# tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/%s" % tool_version,
# history_id=self.history_id,
# tool_inputs={"abbr": self.abbreviation,
# "genus": self.genus_uppercase,
# "species": self.chado_species_name,
# "common": self.common})
# org_job_out = org["outputs"][0]["id"]
# org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
# try:
# org_output = json.loads(org_json_output)[0]
# self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
# except IndexError:
# logging.critical("No organism matching " + self.full_name + " exists in the instance's chado database")
# sys.exit()
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def get_genome_analysis_id(self):
"""
"""
# Get the ID for the genome analysis in chado
genome_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
history_id=self.history_id,
tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version})
genome_analysis_job_out = genome_analysis["outputs"][0]["id"]
genome_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=genome_analysis_job_out)
try:
genome_analysis_output = json.loads(genome_analysis_json_output)[0]
self.genome_analysis_id = str(genome_analysis_output["analysis_id"])
except IndexError as exc:
logging.critical("no matching genome analysis exists in the instance's chado database")
sys.exit(exc)
return self.genome_analysis_id
def get_ogs_analysis_id(self):
"""
"""
# Get the ID for the OGS analysis in chado
ogs_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
history_id=self.history_id,
tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version})
ogs_analysis_job_out = ogs_analysis["outputs"][0]["id"]
ogs_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=ogs_analysis_job_out)
try:
ogs_analysis_output = json.loads(ogs_analysis_json_output)[0]
self.ogs_analysis_id = str(ogs_analysis_output["analysis_id"])
except IndexError as exc:
logging.critical("No matching OGS analysis exists in the instance's chado database")
sys.exit(exc)
return self.ogs_analysis_id
def add_interproscan_analysis(self):
"""
"""

Arthur Le Bars
committed
# Add Interpro analysis to chado
logging.info("Adding Interproscan analysis to the instance's chado database")

Arthur Le Bars
committed
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3",
history_id=self.history_id,
tool_inputs={"name": "InterproScan on OGS%s" % self.ogs_version,
"program": "InterproScan",
"programversion": "OGS%s" % self.ogs_version,
"sourcename": "Genoscope",
"date_executed": self.date})
def get_interpro_analysis_id(self):
"""
"""
# Get interpro ID
interpro_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
history_id=self.history_id,
tool_inputs={"name": "InterproScan on OGS%s" % self.ogs_version})
interpro_analysis_job_out = interpro_analysis["outputs"][0]["id"]
interpro_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=interpro_analysis_job_out)
try:
interpro_analysis_output = json.loads(interpro_analysis_json_output)[0]
self.interpro_analysis_id = str(interpro_analysis_output["analysis_id"])
except IndexError as exc:
logging.critical("No matching InterproScan analysis exists in the instance's chado database")
sys.exit(exc)
return self.interpro_analysis_id
def add_blastp_diamond_analysis(self):
"""
"""

Arthur Le Bars
committed
# Add Blastp (diamond) analysis to chado
logging.info("Adding Blastp Diamond analysis to the instance's chado database")

Arthur Le Bars
committed
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3",
history_id=self.history_id,
tool_inputs={"name": "Diamond on OGS%s" % self.ogs_version,
"program": "Diamond",
"programversion": "OGS%s" % self.ogs_version,
"sourcename": "Genoscope",
"date_executed": self.date})
def get_blastp_diamond_analysis_id(self):
"""
"""
# Get blasp ID
blast_diamond_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
history_id=self.history_id,
tool_inputs={"name": "Diamond on OGS%s" % self.ogs_version})
blast_diamond_analysis_job_out = blast_diamond_analysis["outputs"][0]["id"]
blast_diamond_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=blast_diamond_analysis_job_out)
try:
blast_diamond_analysis_output = json.loads(blast_diamond_analysis_json_output)[0]
self.blast_diamond_analysis_id = str(blast_diamond_analysis_output["analysis_id"])

Arthur Le Bars
committed
except IndexError as exc:
logging.critical("No matching InterproScan analysis exists in the instance's chado database")
sys.exit(exc)
return self.blast_diamond_analysis_id

Arthur Le Bars
committed

Arthur Le Bars
committed

Arthur Le Bars
committed
def run_workflow(self, workflow_path, workflow_parameters, workflow_name, datamap):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Run a workflow in galaxy
Requires the .ga file to be loaded as a dictionary (optionally could be uploaded as a raw file)

Arthur Le Bars
committed
:param workflow_name:
:param workflow_parameters:
:param datamap:
:return:
"""
logging.info("Importing workflow %s" % str(workflow_path))

Arthur Le Bars
committed

Arthur Le Bars
committed
# Load the workflow file (.ga) in a buffer
with open(workflow_path, 'r') as ga_in_file:
# Then store the decoded json dictionary

Arthur Le Bars
committed

Arthur Le Bars
committed
# In case of the Jbrowse workflow, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
# Scratchgmod test: need "http" (or "https"), the hostname (+ port)
# TODO --> use menu_url variable in config to set up the menu url

Arthur Le Bars
committed
if workflow_name == "Jbrowse":
workflow_dict["steps"]["2"]["tool_state"] = workflow_dict["steps"]["2"]["tool_state"].replace("__MENU_URL__", "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/{id}".format(hostname=self.config["hostname"], genus_sp=self.genus_species, Genus=self.genus_uppercase, species=self.species, id="{id}"))
# The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
# in galaxy --> define a naming method for these workflows
workflow_dict["steps"]["3"]["tool_state"] = workflow_dict["steps"]["3"]["tool_state"].replace("__FULL_NAME__", self.full_name).replace("__UNIQUE_ID__", self.species_folder_name)

Arthur Le Bars
committed
# Import the workflow in galaxy as a dict

Arthur Le Bars
committed
self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

Arthur Le Bars
committed
# Get its attributes
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)

Arthur Le Bars
committed
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_attributes[0]["id"] # Index 0 is the most recently imported workflow (the one we want)

Arthur Le Bars
committed
show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)

Arthur Le Bars
committed
# Check if the workflow is found

Arthur Le Bars
committed
try:

Arthur Le Bars
committed
logging.debug("Workflow ID: %s" % workflow_id)

Arthur Le Bars
committed
except bioblend.ConnectionError:

Arthur Le Bars
committed
logging.warning("Error retrieving workflow attributes for workflow %s" % workflow_name)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it

Arthur Le Bars
committed
self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
history_id=self.history_id,
params=workflow_parameters,
inputs=datamap,

Arthur Le Bars
committed
allow_tool_state_corrections=True)

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance ({1}) for the jobs state".format(workflow_name, self.instance_url))
def get_invocation_report(self, workflow_name):
"""
Debugging method for workflows

Arthur Le Bars
committed
Simply logs and returns a report of the previous workflow invocation (execution of a workflow in
the instance via the API)
:param workflow_name:
:return:
"""
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)

Arthur Le Bars
committed
workflow_id = workflow_attributes[1]["id"] # Most recently imported workflow (index 1 in the list)
invocations = self.instance.workflows.get_invocations(workflow_id=workflow_id)

Arthur Le Bars
committed
invocation_id = invocations[1]["id"] # Most recent invocation
invocation_report = self.instance.invocations.get_invocation_report(invocation_id=invocation_id)
logging.debug(invocation_report)

Arthur Le Bars
committed
return invocation_report
def get_datasets_ldda_ids(self):
"""
Get and return the ldda_ids (and names) for the datasets in the library
"""
return 0
Find datasets in a library, get their ID and import them into the current history if they are not already
:return:
"""
# Instanciate the instance
gio = GalaxyInstance(url=self.instance_url,

Arthur Le Bars
committed
email=self.config["galaxy_default_admin_email"],
password=self.config["galaxy_default_admin_password"])
prj_lib = gio.libraries.get_previews(name="Project Data")
library_id = prj_lib[0].id
instance_source_data_folders = self.instance.libraries.get_folders(library_id=str(library_id))

Arthur Le Bars
committed
folder_name = ""
# Loop over the folders in the library and map folders names to their IDs
for i in instance_source_data_folders:

Arthur Le Bars
committed
folders_ids[i["name"]] = i["id"]
# Iterating over the folders to find datasets and map datasets to their IDs

Arthur Le Bars
committed
logging.debug("Datasets IDs: ")

Arthur Le Bars
committed
if k == "/genome/{0}/v{1}".format(self.species_folder_name, self.genome_version):
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)

Arthur Le Bars
committed
for k2, v2 in sub_folder_content.items():
for e in v2:
if type(e) == dict:
if e["name"].endswith(".fa"):
self.datasets["genome_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["genome_file"] = e["name"]
logging.debug("\tGenome file:\t" + e["name"] + ": " + e["ldda_id"])
if k == "/annotation/{0}/OGS{1}".format(self.species_folder_name, self.ogs_version):
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)

Arthur Le Bars
committed
for k2, v2 in sub_folder_content.items():
for e in v2:
if type(e) == dict:
if "transcripts" in e["name"]:
self.datasets["transcripts_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["transcripts_file"] = e["name"]
logging.debug("\tTranscripts file:\t" + e["name"] + ": " + e["ldda_id"])

Arthur Le Bars
committed
self.datasets_name["proteins_file"] = e["name"]
logging.debug("\tProteins file:\t" + e["name"] + ": " + e["ldda_id"])
elif "gff" in e["name"]:
self.datasets["gff_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["gff_file"] = e["name"]
logging.debug("\tGFF file:\t" + e["name"] + ": " + e["ldda_id"])
self.datasets["interproscan_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["interproscan_file"] = e["name"]
logging.debug("\tInterproscan file:\t" + e["name"] + ": " + e["ldda_id"])
self.datasets["blast_diamond_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["blast_diamond_file"] = e["name"]
logging.debug("\tBlastp diamond file:\t" + e["name"] + ": " + e["ldda_id"])
logging.debug("Uploading datasets into history %s" % self.history_id)
# Import each dataset into history if it is not imported

Arthur Le Bars
committed
first_hda_ids = self.get_datasets_hda_ids()
if first_hda_ids["genome_hda_id"] is None:
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["genome_file"])

Arthur Le Bars
committed
if first_hda_ids["gff_hda_id"] is None:
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["gff_file"])

Arthur Le Bars
committed
if first_hda_ids["transcripts_hda_id"] is None:
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["transcripts_file"])

Arthur Le Bars
committed
if first_hda_ids["proteins_hda_id"] is None:
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["proteins_file"])

Arthur Le Bars
committed
if first_hda_ids["interproscan_hda_id"] is None:
try:
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["interproscan_file"])
except Exception as exc:

Arthur Le Bars
committed
logging.debug("Interproscan file not found in library (history: {0})".format(self.history_id))
if first_hda_ids["blast_diamond_hda_id"] is None:
try:
self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["blast_diamond_file"])
except Exception as exc:

Arthur Le Bars
committed
logging.debug("Blastp file not found in library (history: {0})".format(self.history_id))
# _datasets = self.instance.datasets.get_datasets()
# with open(os.path.join(self.main_dir, "datasets_ids.json"), "w") as datasets_ids_outfile:
# datasets_ids_outfile.write(str(_datasets))

Arthur Le Bars
committed
# Return a dict made of the hda ids
return self.get_datasets_hda_ids()
def get_datasets_hda_ids(self):
"""
Get the hda IDs of the datasets imported into an history

Arthur Le Bars
committed
As some tools will not work using the input datasets ldda IDs we need to retrieve the datasets IDs imported
into an history
:return:
"""
# List of all datasets in the instance (including outputs from jobs)
# "limit" and "offset" options *may* be used to restrict search to specific datasets but since
# there is no way to know which imported datasets are the correct ones depending on history content
# it's not currently used
history_datasets_li = self.instance.datasets.get_datasets()
genome_dataset_hda_id, gff_dataset_hda_id, transcripts_dataset_hda_id, proteins_datasets_hda_id = None, None, None, None
interproscan_dataset_hda_id, blast_diamond_dataset_hda_id = None, None

Arthur Le Bars
committed
# Match files imported in history names vs library datasets names to assign their respective hda_id
for dataset_dict in history_datasets_li:

Arthur Le Bars
committed
if dataset_dict["history_id"] == self.history_id:
if dataset_dict["name"] == self.datasets_name["genome_file"]:
genome_dataset_hda_id = dataset_dict["id"]
logging.debug("Genome dataset hda id: %s" % genome_dataset_hda_id)
elif dataset_dict["name"] == self.datasets_name["proteins_file"]:
proteins_datasets_hda_id = dataset_dict["id"]
logging.debug("Proteins dataset hda ID: %s" % proteins_datasets_hda_id)
elif dataset_dict["name"] == self.datasets_name["transcripts_file"]:
transcripts_dataset_hda_id = dataset_dict["id"]
logging.debug("Transcripts dataset hda ID: %s" % transcripts_dataset_hda_id)
elif dataset_dict["name"] == self.datasets_name["gff_file"]:
gff_dataset_hda_id = dataset_dict["id"]
logging.debug("GFF dataset hda ID: %s" % gff_dataset_hda_id)
if "interproscan_file" in self.datasets_name.keys():
if dataset_dict["name"] == self.datasets_name["interproscan_file"]:
interproscan_dataset_hda_id = dataset_dict["id"]
logging.debug("InterproScan dataset hda ID: %s" % gff_dataset_hda_id)
if "blast_diamond_file" in self.datasets_name.keys():
if dataset_dict["name"] == self.datasets_name["blast_diamond_file"]:
blast_diamond_dataset_hda_id = dataset_dict["id"]
logging.debug("Blast Diamond dataset hda ID: %s" % gff_dataset_hda_id)
# Return a dict made of the hda ids

Arthur Le Bars
committed
return {"genome_hda_id": genome_dataset_hda_id, "transcripts_hda_id": transcripts_dataset_hda_id,
"proteins_hda_id": proteins_datasets_hda_id, "gff_hda_id": gff_dataset_hda_id,
"interproscan_hda_id": interproscan_dataset_hda_id,
"blast_diamond_hda_id": blast_diamond_dataset_hda_id}
def get_organism_id(self):

Arthur Le Bars
committed
"""
Retrieve current organism ID
Will try to add it to Chado if the organism ID can't be found

Arthur Le Bars
committed
:return:
"""

Arthur Le Bars
committed
tool_version = "2.3.3"
time.sleep(3)
# # Get the ID for the current organism in chado
# org = self.instance.tools.run_tool(
# tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",
# history_id=self.history_id,
# tool_inputs={"abbr": self.abbreviation,
# "genus": self.genus_uppercase,
# "species": self.chado_species_name,
# "common": self.common})

Arthur Le Bars
committed
# Run tool again (sometimes the tool doesn't return anything despite the organism already being in the db)
org = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})

Arthur Le Bars
committed
org_job_out = org["outputs"][0]["id"]
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
try:
org_output = json.loads(org_json_output)[0]
self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
except IndexError:
logging.warning("No organism matching " + self.full_name + " exists in the instance's chado database, adding it")
if self.common == "" or self.common is None:
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.abbreviation})
else:
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})
# Run tool again (sometimes the tool doesn't return anything despite the organism already being in the db)
org = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.3",
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})
org_job_out = org["outputs"][0]["id"]
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out)
try:
org_output = json.loads(org_json_output)[0]
self.org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
except IndexError:
logging.critical("Cannot add {0} as an organism in Chado, please check the galaxy instance {1}".format(self.full_name, self.instance_url))
sys.exit()
return self.org_id

Arthur Le Bars
committed
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Automatic data loading in containers and interaction "
"with galaxy instances for GGA"
", following the protocol @ "
"http://gitlab.sb-roscoff.fr/abims/e-infra/gga")
parser.add_argument("input",
type=str,
help="Input file (yml)")
parser.add_argument("-v", "--verbose",
help="Increase output verbosity",

Arthur Le Bars
committed
action="store_true")
parser.add_argument("--config",
type=str,
help="Config path, default to the 'config' file inside the script repository")
parser.add_argument("--main-directory",
type=str,
help="Where the stack containers will be located, defaults to working directory")

Arthur Le Bars
committed

Arthur Le Bars
committed
parser.add_argument("--workflow", "-w",
type=str,
help="Worfklow to run")

Arthur Le Bars
committed
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
logging.getLogger("urllib3").setLevel(logging.INFO)
logging.getLogger("bioblend").setLevel(logging.INFO)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Parsing the config file if provided, using the default config otherwise
if not args.config:
args.config = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), "config")
else:
args.config = os.path.abspath(args.config)
if not args.main_directory:
args.main_directory = os.getcwd()
else:
args.main_directory = os.path.abspath(args.main_directory)
sp_dict_list = utilities.parse_input(args.input)

Arthur Le Bars
committed
for sp_dict in sp_dict_list:

Arthur Le Bars
committed
# Creating an instance of the RunWorkflow object for the current organism

Arthur Le Bars
committed
run_workflow_for_current_organism = RunWorkflow(parameters_dictionary=sp_dict)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Checking if user specified a workflow to run
if not args.workflow:
logging.critical("No workflow specified, exiting")
sys.exit()
else:
workflow = os.path.abspath(args.workflow)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Verifying the galaxy container is running
if utilities.check_galaxy_state(genus_lowercase=run_workflow_for_current_organism.genus_lowercase,
species=run_workflow_for_current_organism.species,
script_dir=run_workflow_for_current_organism.script_dir):
# Starting
logging.info("run_workflow.py called for %s" % run_workflow_for_current_organism.full_name)
# Setting some of the instance attributes
run_workflow_for_current_organism.main_dir = args.main_directory
run_workflow_for_current_organism.species_dir = os.path.join(run_workflow_for_current_organism.main_dir,
run_workflow_for_current_organism.genus_species +
"/")
# Parse the config yaml file
run_workflow_for_current_organism.config = utilities.parse_config(args.config)
# Set the instance url attribute --> TODO: the localhost rule in the docker-compose still doesn't work on scratchgmodv1
run_workflow_for_current_organism.instance_url = "http://localhost:{0}/sp/{1}_{2}/galaxy/".format(
run_workflow_for_current_organism.config["http_port"],
run_workflow_for_current_organism.genus_lowercase,
run_workflow_for_current_organism.species)

Arthur Le Bars
committed

Arthur Le Bars
committed
# If input workflow is Chado_load_Tripal_synchronize.ga
if "Chado_load_Tripal_synchronize" in str(workflow):
logging.info("Executing workflow 'Chado_load_Tripal_synchronize'")
run_workflow_for_current_organism.connect_to_instance()
run_workflow_for_current_organism.set_get_history()
# run_workflow_for_current_organism.get_species_history_id()
run_workflow_for_current_organism.install_changesets_revisions_for_individual_tools()
run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
run_workflow_for_current_organism.add_organism_ogs_genome_analyses()
run_workflow_for_current_organism.get_organism_id()
run_workflow_for_current_organism.get_genome_analysis_id()
run_workflow_for_current_organism.get_ogs_analysis_id()
# run_workflow_for_current_organism.tripal_synchronize_organism_analyses()

Arthur Le Bars
committed
# Get the attributes of the instance and project data files
run_workflow_for_current_organism.get_instance_attributes()

Arthur Le Bars
committed
# Import datasets into history and retrieve their hda IDs
# TODO: can be simplified with direct access to the folder contents via the full path (no loop required)

Arthur Le Bars
committed
hda_ids = run_workflow_for_current_organism.import_datasets_into_history()

Arthur Le Bars
committed
# run_workflow_for_current_organism.get_invocation_report(workflow_name="Chado load Tripal synchronize")

Arthur Le Bars
committed
# Explicit workflow parameter names
GENOME_FASTA_FILE = "0"
GFF_FILE = "1"
PROTEINS_FASTA_FILE = "2"
TRANSCRIPTS_FASTA_FILE = "3"
LOAD_FASTA_IN_CHADO = "4"
LOAD_GFF_IN_CHADO = "5"
SYNC_ORGANISM_INTO_TRIPAL = "6"
SYNC_GENOME_ANALYSIS_INTO_TRIPAL = "7"
SYNC_OGS_ANALYSIS_INTO_TRIPAL = "8"
SYNC_FEATURES_INTO_TRIPAL = "9"
workflow_parameters = {}
workflow_parameters[GENOME_FASTA_FILE] = {}
workflow_parameters[GFF_FILE] = {}
workflow_parameters[PROTEINS_FASTA_FILE] = {}
workflow_parameters[TRANSCRIPTS_FASTA_FILE] = {}

Arthur Le Bars
committed

Arthur Le Bars
committed
workflow_parameters[LOAD_FASTA_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
"analysis_id": run_workflow_for_current_organism.genome_analysis_id,
"do_update": "true"}
# Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado
# WARNING: It is safer to never update it and just change the genome/ogs versions in the config
workflow_parameters[LOAD_GFF_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
"analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
workflow_parameters[SYNC_ORGANISM_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
workflow_parameters[SYNC_GENOME_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
workflow_parameters[SYNC_OGS_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.genome_analysis_id}
workflow_parameters[SYNC_FEATURES_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
# Datamap for input datasets - dataset source (type): ldda (LibraryDatasetDatasetAssociation)
run_workflow_for_current_organism.datamap = {}

Arthur Le Bars
committed
run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id": hda_ids["genome_hda_id"]}
run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda", "id": hda_ids["gff_hda_id"]}
run_workflow_for_current_organism.datamap[PROTEINS_FASTA_FILE] = {"src": "hda", "id": hda_ids["proteins_hda_id"]}
run_workflow_for_current_organism.datamap[TRANSCRIPTS_FASTA_FILE] = {"src": "hda", "id": hda_ids["transcripts_hda_id"]}

Arthur Le Bars
committed

Arthur Le Bars
committed
# run_workflow_for_current_organism.datamap = {}
# run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id":
# run_workflow_for_current_organism.datasets["genome_file"]}
# run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda",
# "id": hda_ids["gff_hda_id"]}

Arthur Le Bars
committed
# Ensures galaxy has had time to retrieve datasets

Arthur Le Bars
committed
time.sleep(60)

Arthur Le Bars
committed
# Run the Chado load Tripal sync workflow with the parameters set above
run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
workflow_parameters=workflow_parameters,
datamap=run_workflow_for_current_organism.datamap,
workflow_name="Chado load Tripal synchronize")

Arthur Le Bars
committed

Arthur Le Bars
committed
# Jbrowse creation workflow
elif "Jbrowse" in str(workflow):

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.info("Executing workflow 'Jbrowse'")

Arthur Le Bars
committed

Arthur Le Bars
committed
run_workflow_for_current_organism.connect_to_instance()
run_workflow_for_current_organism.set_get_history()
run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
run_workflow_for_current_organism.get_organism_id()

Arthur Le Bars
committed
# Import datasets into history and get their hda IDs

Arthur Le Bars
committed
run_workflow_for_current_organism.import_datasets_into_history()

Arthur Le Bars
committed
hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids() # Note: only call this function AFTER calling "import_datasets_into_history()"
# Debugging
# run_workflow_for_current_organism.get_invocation_report(workflow_name="Jbrowse")

Arthur Le Bars
committed

Arthur Le Bars
committed
GENOME_FASTA_FILE = "0"
GFF_FILE = "1"
ADD_JBROWSE = "2"
ADD_ORGANISM_TO_JBROWSE = "3"
workflow_parameters = {}
workflow_parameters[GENOME_FASTA_FILE] = {}
workflow_parameters[GFF_FILE] = {}

Arthur Le Bars
committed
workflow_parameters[ADD_JBROWSE] = {}
workflow_parameters[ADD_ORGANISM_TO_JBROWSE] = {}

Arthur Le Bars
committed
run_workflow_for_current_organism.datamap = {}
run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id": hda_ids["genome_hda_id"]}
run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda", "id": hda_ids["gff_hda_id"]}

Arthur Le Bars
committed
# Run the jbrowse creation workflow
run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
workflow_parameters=workflow_parameters,
datamap=run_workflow_for_current_organism.datamap,
workflow_name="Jbrowse")

Arthur Le Bars
committed
elif "Interpro" in str(workflow):
logging.info("Executing workflow 'Interproscan")
run_workflow_for_current_organism.connect_to_instance()
run_workflow_for_current_organism.set_get_history()
run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)

Arthur Le Bars
committed
# run_workflow_for_current_organism.get_species_history_id()
# Get the attributes of the instance and project data files
run_workflow_for_current_organism.get_instance_attributes()
run_workflow.add_interproscan_analysis()
run_workflow_for_current_organism.get_interpro_analysis_id()

Arthur Le Bars
committed
# Import datasets into history and retrieve their hda IDs
run_workflow_for_current_organism.import_datasets_into_history()
hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids()
INTERPRO_FILE = "0"
LOAD_INTERPRO_IN_CHADO = "1"
SYNC_INTERPRO_ANALYSIS_INTO_TRIPAL = "2"