Skip to content
Snippets Groups Projects
run_workflow_phaeoexplorer.py 88.2 KiB
Newer Older
# -*- coding: utf-8 -*-

import bioblend.galaxy.objects
import argparse
import os
import logging
import sys
import utilities_bioblend
gga_init.py
Usage: $ python3 gga_init.py -i input_example.yml --config [config file] [OPTIONS]
Loraine Guéguen's avatar
Loraine Guéguen committed
class StrainWorkflowParam:
    def __init__(self, genus_species, strain_sex, genus_uppercase, chado_species_name, full_name, species_folder_name,
                 org_id, history_id, instance, genome_analysis_id=None, ogs_analysis_id=None, blastp_analysis_id=None, interpro_analysis_id=None,
                 genome_hda_id=None, gff_hda_id=None, transcripts_hda_id=None, proteins_hda_id=None, blastp_hda_id=None, blastx_hda_id=None, interproscan_hda_id=None):
        self.genus_species = genus_species
        self.strain_sex = strain_sex
Loraine Gueguen's avatar
Loraine Gueguen committed
        self.genus_uppercase = genus_uppercase
        self.chado_species_name = chado_species_name,
Loraine Guéguen's avatar
Loraine Guéguen committed
        self.full_name = full_name
        self.species_folder_name = species_folder_name
        self.org_id = org_id
        self.genome_analysis_id = genome_analysis_id
        self.ogs_analysis_id = ogs_analysis_id
        self.blastp_analysis_id = blastp_analysis_id
        self.interpro_analysis_id = interpro_analysis_id
        self.history_id = history_id
        self.instance = instance
        self.genome_hda_id = genome_hda_id,
        self.gff_hda_id = gff_hda_id,
        self.transcripts_hda_id = transcripts_hda_id,
        self.proteins_hda_id = proteins_hda_id,
        self.blastp_hda_id = blastp_hda_id,
        self.blastx_hda_id = blastx_hda_id,
        self.interproscan_hda_id = interproscan_hda_id,

    def check_param_for_workflow_load_fasta_gff_jbrowse(self):
        params = [self.genus_species, self.strain_sex, self.genus_uppercase,
                  self.chado_species_name, self.full_name,
                  self.species_folder_name, self.org_id,
                  self.history_id, self.instance,
                  self.genome_analysis_id, self.ogs_analysis_id,
                  self.genome_hda_id, self.gff_hda_id, self.transcripts_hda_id, self.proteins_hda_id]
        utilities_bioblend.check_wf_param(self.full_name, params)
    def check_param_for_workflow_blastp(self):
        params = [self.genus_species, self.strain_sex, self.genus_uppercase,
                  self.chado_species_name, self.full_name,
                  self.species_folder_name, self.org_id,
                  self.history_id, self.instance,
                  self.blastp_analysis_id,
                  self.blastp_hda_id]
        utilities_bioblend.check_wf_param(self.full_name, params)
    def check_param_for_workflow_interpro(self):
        params = [self.genus_species, self.strain_sex, self.genus_uppercase,
                  self.chado_species_name, self.full_name,
                  self.species_folder_name, self.org_id,
                  self.history_id, self.instance,
                  self.interpro_analysis_id,
                  self.interproscan_hda_id]
        utilities_bioblend.check_wf_param(self.full_name, params)
class RunWorkflow(speciesData.SpeciesData):
    """
    Run a workflow into the galaxy instance's history of a given species

    This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,
    provided the user creates their own workflow in a .ga format, and change the set_parameters function
    to have the correct parameters for their workflow
    def __init__(self, parameters_dictionary):

        super().__init__(parameters_dictionary)

        self.chado_species_name = " ".join(utilities.filter_empty_not_empty_items(
            [self.species, self.strain, self.sex])["not_empty"])

        self.abbreviation = self.genus_uppercase[0] + ". " + self.chado_species_name

        self.common = self.name
        if not self.common_name is None and self.common_name != "":
            self.common = self.common_name

        self.history_name = str(self.genus_species)

        self.genome_analysis_name = "genome v{0} of {1}".format(self.genome_version, self.full_name)
        self.genome_analysis_programversion = "genome v{0}".format(self.genome_version)
        self.genome_analysis_sourcename = self.full_name

        self.ogs_analysis_name = "OGS{0} of {1}".format(self.ogs_version, self.full_name)
        self.ogs_analysis_programversion = "OGS{0}".format(self.ogs_version)
        self.ogs_analysis_sourcename = self.full_name

Loraine Gueguen's avatar
Loraine Gueguen committed
        self.genome_hda_id = None
        self.gff_hda_id = None
        self.transcripts_hda_id = None
        self.proteins_hda_id = None
        self.blastp_hda_id = None
        self.blastx_hda_id = None
        self.interproscan_hda_id = None

    def install_changesets_revisions_for_individual_tools(self):
        This function is used to verify that installed tools called outside workflows have the correct versions and changesets
        If it finds versions don't match, will install the correct version + changeset in the instance
        Doesn't do anything if versions match
        :return:
        """

        logging.info("Validating installed individual tools versions and changesets")
        # Verify that the add_organism and add_analysis versions are correct in the instance
        # changeset for 2.3.4+galaxy0 has to be manually found because there is no way to get the wanted changeset of a non installed tool via bioblend
        # except for workflows (.ga) that already contain the changeset revisions inside the steps ids
        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
                                                       version=constants_phaeo.GET_ORGANISMS_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.GET_ORGANISMS_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.GET_ANALYSES_TOOL_ID,
                                                       version=constants_phaeo.GET_ANALYSES_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.GET_ANALYSES_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
                                                       version=constants_phaeo.ADD_ORGANISM_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ADD_ORGANISM_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ADD_ANALYSIS_TOOL_ID,
                                                       version=constants_phaeo.ADD_ANALYSIS_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ADD_ANALYSIS_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ANALYSIS_SYNC_TOOL_ID,
                                                       version=constants_phaeo.ANALYSIS_SYNC_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ANALYSIS_SYNC_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)

        utilities_bioblend.install_repository_revision(tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
                                                       version=constants_phaeo.ORGANISM_SYNC_TOOL_VERSION,
                                                       changeset_revision=constants_phaeo.ORGANISM_SYNC_TOOL_CHANGESET_REVISION,
                                                       instance=self.instance)
        logging.info("Success: individual tools versions and changesets validated")
    def add_analysis(self, name, programversion, sourcename):
        add_analysis_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
            tool_id=constants_phaeo.ADD_ANALYSIS_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={"name": name,
                         "program": constants_phaeo.ADD_ANALYSIS_TOOL_PARAM_PROGRAM,
                         "programversion": programversion,
                         "sourcename": sourcename,
                         "date_executed": constants_phaeo.ADD_ANALYSIS_TOOL_PARAM_DATE})
        analysis_dict = json.loads(add_analysis_tool_dataset)
        analysis_id = str(analysis_dict["analysis_id"])
        utilities_bioblend.run_tool(
            tool_id=constants_phaeo.ANALYSIS_SYNC_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={"analysis_id": analysis_id})
        get_organisms_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
            tool_id=constants_phaeo.GET_ORGANISMS_TOOL_ID,
            tool_inputs={},
            time_sleep=10
        )
        organisms_dict_list = json.loads(get_organisms_tool_dataset)  # Turn the dataset into a list for parsing
        # Look up list of outputs (dictionaries)
        for org_dict in organisms_dict_list:
            if org_dict["genus"] == self.genus_uppercase and org_dict["species"] == self.chado_species_name:
                org_id = str(org_dict["organism_id"])  # id needs to be a str to be recognized by chado tools
        if org_id is None:
            add_organism_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
                tool_id=constants_phaeo.ADD_ORGANISM_TOOL_ID,
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.common})
            organism_dict = json.loads(add_organism_tool_dataset)
            org_id = str(organism_dict["organism_id"])  # id needs to be a str to be recognized by chado tools
        # Synchronize newly added organism in Tripal
        logging.info("Synchronizing organism %s in Tripal" % self.full_name)
        time.sleep(60)
        utilities_bioblend.run_tool(
            tool_id=constants_phaeo.ORGANISM_SYNC_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={"organism_id": org_id})
        get_analyses_tool_dataset = utilities_bioblend.run_tool_and_download_single_output_dataset(
            tool_id=constants_phaeo.GET_ANALYSES_TOOL_ID,
            history_id=self.history_id,
            tool_inputs={},
            time_sleep=10
        )
        analyses_dict_list = json.loads(get_analyses_tool_dataset)
        return analyses_dict_list
    def add_analysis_and_sync(self, analyses_dict_list, analysis_name, analysis_programversion, analysis_sourcename):
        """
        Add one analysis to Chado database
        Required for Chado Load Tripal Synchronize workflow (which should be ran as the first workflow)
        Called outside workflow for practical reasons (Chado add doesn't have an input link for analysis or organism)
        """

        # Look up list of outputs (dictionaries)
        for analyses_dict in analyses_dict_list:
            if analyses_dict["name"] == analysis_name:
                analysis_id = str(analyses_dict["analysis_id"])
        if analysis_id is None:
            analysis_id = self.add_analysis(
                name=analysis_name,
                programversion=analysis_programversion,
                sourcename=analysis_sourcename
            )
        # Synchronize analysis in Tripal
        logging.info("Synchronizing analysis %s in Tripal" % analysis_name)
        self.sync_analysis(analysis_id=analysis_id)
    def add_organism_blastp_analysis(self):
        """
        Add OGS and genome vX analyses to Chado database
        Required for Chado Load Tripal Synchronize workflow (which should be ran as the first workflow)
        Called outside workflow for practical reasons (Chado add doesn't have an input link for analysis or organism)

        :return:

        """

        self.set_galaxy_instance()
        self.set_history()

        tool_version = "2.3.4+galaxy0"

        get_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.4+galaxy0")

        get_organisms = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/%s" % tool_version,
            history_id=self.history_id,
            tool_inputs={})

        time.sleep(10)  # Ensure the tool has had time to complete
        org_outputs = get_organisms["outputs"]  # Outputs from the get_organism tool
        org_job_out_id = org_outputs[0]["id"]  # ID of the get_organism output dataset (list of dicts)
        org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id)  # Download the dataset
        org_output = json.loads(org_json_output)  # Turn the dataset into a list for parsing

        org_id = None

        # Look up list of outputs (dictionaries)
        for organism_output_dict in org_output:
            if organism_output_dict["genus"] == self.genus and organism_output_dict["species"] == "{0} {1}".format(self.species, self.sex):
                correct_organism_id = str(organism_output_dict["organism_id"])  # id needs to be a str to be recognized by chado tools
                org_id = str(correct_organism_id)


        if org_id is None:
            add_org_job = self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.common})
            org_job_out_id = add_org_job["outputs"][0]["id"]
            org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id)
            org_output = json.loads(org_json_output)
            org_id = str(org_output["organism_id"])  # id needs to be a str to be recognized by chado tools
            # Synchronize newly added organism in Tripal
            logging.info("Synchronizing organism %s in Tripal" % self.full_name)
            time.sleep(60)
            org_sync = self.instance.tools.run_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0",
                                                    history_id=self.history_id,
                                                    tool_inputs={"organism_id": org_id})


        get_analyses = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/%s" % tool_version,
            history_id=self.history_id,
            tool_inputs={})

        time.sleep(10)
        analysis_outputs = get_analyses["outputs"]
        analysis_job_out_id = analysis_outputs[0]["id"]
        analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
        analysis_output = json.loads(analysis_json_output)

        blastp_analysis_id = None

        # Look up list of outputs (dictionaries)
        for analysis_output_dict in analysis_output:
            if analysis_output_dict["name"] == "Diamond on " + self.full_name_lowercase + " OGS" + self.ogs_version:
                blastp_analysis_id = str(analysis_output_dict["analysis_id"])


        if blastp_analysis_id is None:
            add_blast_analysis_job = self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/%s" % tool_version,
                history_id=self.history_id,
                tool_inputs={"name": "Diamond on " + self.full_name_lowercase + " OGS" + self.ogs_version,
                             "program": "Performed by Genoscope",
                             "programversion": str(self.sex + " OGS" + self.ogs_version),
                             "sourcename": "Genoscope",
                             "date_executed": self.date})
            analysis_outputs = add_blast_analysis_job["outputs"]
            analysis_job_out_id = analysis_outputs[0]["id"]
            analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
            analysis_output = json.loads(analysis_json_output)
            blastp_analysis_id = str(analysis_output["analysis_id"])
        # Synchronize blastp analysis
        logging.info("Synchronizing Diamong blastp OGS%s analysis in Tripal" % self.ogs_version)
        time.sleep(60)
        blastp_analysis_sync = self.instance.tools.run_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_analysis_sync/analysis_sync/3.2.1.0",
                                                            history_id=self.history_id,
                                                            tool_inputs={"analysis_id": blastp_analysis_id})
        # print({"org_id": org_id, "genome_analysis_id": genome_analysis_id, "ogs_analysis_id": ogs_analysis_id})
        return {"org_id": org_id, "blastp_analysis_id": blastp_analysis_id}
    def add_organism_interproscan_analysis(self):
        Add OGS and genome vX analyses to Chado database
        Required for Chado Load Tripal Synchronize workflow (which should be ran as the first workflow)
        Called outside workflow for practical reasons (Chado add doesn't have an input link for analysis or organism)

        :return:

        self.set_galaxy_instance()
        self.set_history()

        tool_version = "2.3.4+galaxy0"

        get_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.4+galaxy0")

        get_organisms = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/%s" % tool_version,
            tool_inputs={})

        time.sleep(10)  # Ensure the tool has had time to complete
        org_outputs = get_organisms["outputs"]  # Outputs from the get_organism tool
        org_job_out_id = org_outputs[0]["id"]  # ID of the get_organism output dataset (list of dicts)
        org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id)  # Download the dataset
        org_output = json.loads(org_json_output)  # Turn the dataset into a list for parsing

        org_id = None

        # Look up list of outputs (dictionaries)
        for organism_output_dict in org_output:
            if organism_output_dict["genus"] == self.genus and organism_output_dict["species"] == "{0} {1}".format(self.species, self.sex):
                correct_organism_id = str(organism_output_dict["organism_id"])  # id needs to be a str to be recognized by chado tools
                org_id = str(correct_organism_id)


        if org_id is None:
            add_org_job = self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,
                history_id=self.history_id,
                tool_inputs={"abbr": self.abbreviation,
                             "genus": self.genus_uppercase,
                             "species": self.chado_species_name,
                             "common": self.common})
            org_job_out_id = add_org_job["outputs"][0]["id"]
            org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id)
            org_output = json.loads(org_json_output)
            org_id = str(org_output["organism_id"])  # id needs to be a str to be recognized by chado tools

            # Synchronize newly added organism in Tripal
            logging.info("Synchronizing organism %s in Tripal" % self.full_name)
            time.sleep(60)
            org_sync = self.instance.tools.run_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0",
                                                    history_id=self.history_id,
                                                    tool_inputs={"organism_id": org_id})


        get_analyses = self.instance.tools.run_tool(
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/%s" % tool_version,
            tool_inputs={})

        time.sleep(10)
        analysis_outputs = get_analyses["outputs"]
        analysis_job_out_id = analysis_outputs[0]["id"]
        analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
        analysis_output = json.loads(analysis_json_output)

        interpro_analysis_id = None

        # Look up list of outputs (dictionaries)
        for analysis_output_dict in analysis_output:
            if analysis_output_dict["name"] == "Interproscan on " + self.full_name_lowercase + " OGS" + self.ogs_version:
                interpro_analysis_id = str(analysis_output_dict["analysis_id"])


        if interpro_analysis_id is None:
            add_interproscan_analysis_job = self.instance.tools.run_tool(
                tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/%s" % tool_version,
                history_id=self.history_id,
                tool_inputs={"name": "Interproscan on " + self.full_name_lowercase + " OGS" + self.ogs_version,
                             "program": "Performed by Genoscope",
                             "programversion": str(self.sex + " OGS" + self.ogs_version),
                             "sourcename": "Genoscope",
                             "date_executed": self.date})
            analysis_outputs = add_interproscan_analysis_job["outputs"]
            analysis_job_out_id = analysis_outputs[0]["id"]
            analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
            analysis_output = json.loads(analysis_json_output)
            interpro_analysis_id = str(analysis_output["analysis_id"])

        # Synchronize blastp analysis
        logging.info("Synchronizing Diamong blastp OGS%s analysis in Tripal" % self.ogs_version)
        time.sleep(60)
        interproscan_analysis_sync = self.instance.tools.run_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_analysis_sync/analysis_sync/3.2.1.0",
                                                            history_id=self.history_id,
                                                            tool_inputs={"analysis_id": interpro_analysis_id})

        # print({"org_id": org_id, "genome_analysis_id": genome_analysis_id, "ogs_analysis_id": ogs_analysis_id})
        return({"org_id": org_id, "interpro_analysis_id": interpro_analysis_id})
    def get_interpro_analysis_id(self):
        """
        """

        # Get interpro ID
        interpro_analysis = self.instance.tools.run_tool(
Arthur Le Bars's avatar
Arthur Le Bars committed
            tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.4+galaxy0",
            history_id=self.history_id,
            tool_inputs={"name": "InterproScan on OGS%s" % self.ogs_version})
        interpro_analysis_job_out = interpro_analysis["outputs"][0]["id"]
        interpro_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=interpro_analysis_job_out)
        try:
            interpro_analysis_output = json.loads(interpro_analysis_json_output)[0]
            self.interpro_analysis_id = str(interpro_analysis_output["analysis_id"])
        except IndexError as exc:
            logging.critical("No matching InterproScan analysis exists in the instance's chado database")
            sys.exit(exc)

        return self.interpro_analysis_id


    def get_invocation_report(self, workflow_name):
        """
        Debugging method for workflows

        Simply logs and returns a report of the previous workflow invocation (execution of a workflow in
        the instance via the API)

        :param workflow_name:
        :return:
        """

        workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)
        workflow_id = workflow_attributes[1]["id"]  # Most recently imported workflow (index 1 in the list)
        invocations = self.instance.workflows.get_invocations(workflow_id=workflow_id)
        invocation_id = invocations[1]["id"]  # Most recent invocation
        invocation_report = self.instance.invocations.get_invocation_report(invocation_id=invocation_id)

        logging.debug(invocation_report)

    def import_datasets_into_history(self):
Arthur Le Bars's avatar
Arthur Le Bars committed
        """
        Find datasets in a library, get their ID and import them into the current history if they are not already
Arthur Le Bars's avatar
Arthur Le Bars committed

        :return:
        """

        genome_ldda_id = None
        transcripts_ldda_id = None
        proteins_ldda_id = None
        gff_ldda_id = None
        interpro_ldda_id = None
        blastp_ldda_id = None
        blastx_ldda_id = None

        genome_hda_id = None
        gff_hda_id = None
        transcripts_hda_id = None
        proteins_hda_id = None
        blastp_hda_id = None
        blastx_hda_id = None
        interproscan_hda_id = None
Arthur Le Bars's avatar
Arthur Le Bars committed

        folder_dict_list = self.instance.libraries.get_folders(library_id=str(self.library_id))
Arthur Le Bars's avatar
Arthur Le Bars committed

Arthur Le Bars's avatar
Arthur Le Bars committed
        # Loop over the folders in the library and map folders names to their IDs
        for folder_dict in folder_dict_list:
            folders_id_dict[folder_dict["name"]] = folder_dict["id"]
Arthur Le Bars's avatar
Arthur Le Bars committed
        # Iterating over the folders to find datasets and map datasets to their IDs
        for folder_name, folder_id in folders_id_dict.items():
            if folder_name == "/genome/{0}/v{1}".format(self.species_folder_name, self.genome_version):
                sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
                for value in sub_folder_content.values():
                    for e in value:
Arthur Le Bars's avatar
Arthur Le Bars committed
                        if type(e) == dict:
                            if e["name"].endswith(self.genome_filename):
                                genome_ldda_id = e["ldda_id"]
            if folder_name == "/annotation/{0}/OGS{1}".format(self.species_folder_name, self.ogs_version):
                sub_folder_content = self.instance.folders.show_folder(folder_id=folder_id, contents=True)
                for value in sub_folder_content.values():
                    for e in value:
Arthur Le Bars's avatar
Arthur Le Bars committed
                        if type(e) == dict:
                            ldda_name = e["name"]
                            ldda_id = e["ldda_id"]
                            if ldda_name.endswith(self.transcripts_filename):
                                transcripts_ldda_id = ldda_id
                            elif ldda_name.endswith(self.proteins_filename):
                                proteins_ldda_id = ldda_id
                            elif ldda_name.endswith(self.gff_filename):
                                gff_ldda_id = ldda_id
                            elif ldda_name.endswith(self.interpro_filename):
                                interpro_ldda_id = ldda_id
                            elif ldda_name.endswith(self.blastp_filename):
                                blastp_ldda_id = ldda_id
                            elif ldda_name.endswith(self.blastx_filename):
                                blastx_ldda_id = ldda_id

        hda_list = self.instance.datasets.get_datasets(self.history_id)
        # Finding datasets in history (matching datasets names)
        for hda in hda_list:
            hda_name = hda["name"]
            hda_id = hda["id"]
            if hda_name == self.genome_filename:
                genome_hda_id = hda_id
            if hda_name ==  self.gff_filename:
                gff_hda_id = hda_id
            if hda_name == self.transcripts_filename:
                transcripts_hda_id = hda_id
            if hda_name == self.proteins_filename :
                proteins_hda_id = hda_id
            if hda_name == self.blastp_filename:
                blastp_hda_id = hda_id
            if hda_name == self.blastx_filename:
                blastx_hda_id = hda_id
            if hda_name == self.interpro_filename:
                interproscan_hda_id = hda_id
        # Import each dataset into history if it is not imported
        logging.debug("Uploading datasets into history %s" % self.history_id)
        if genome_hda_id is None:
            genome_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=genome_ldda_id)
            genome_hda_id = genome_dataset_upload["id"]
        if gff_hda_id is  None:
            gff_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=gff_ldda_id)
            gff_hda_id = gff_dataset_upload["id"]
        if proteins_hda_id is None:
            proteins_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=proteins_ldda_id)
            proteins_hda_id = proteins_dataset_upload["id"]
        if transcripts_hda_id is None:
            transcripts_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=transcripts_ldda_id)
            transcripts_hda_id = transcripts_dataset_upload["id"]
        if interproscan_hda_id is None:
                interproscan_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=interpro_ldda_id)
                interproscan_hda_id = interproscan_dataset_upload["id"]
                logging.debug("Interproscan file not found in library (history: {0})".format(self.history_id))
        if blastp_hda_id is None:
                blastp_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=blastp_ldda_id)
                blastp_hda_id = blastp_dataset_upload["id"]
                logging.debug("blastp file not found in library (history: {0})".format(self.history_id))
        if blastx_hda_id is None:
            try:
                blastx_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=blastx_ldda_id)
                blastx_hda_id = blastx_dataset_upload["id"]
            except Exception as exc:
                logging.debug("blastp file not found in library (history: {0})".format(self.history_id))

Loraine Gueguen's avatar
Loraine Gueguen committed
        self.genome_hda_id = genome_hda_id
        self.gff_hda_id = gff_hda_id
        self.transcripts_hda_id = transcripts_hda_id
        self.proteins_hda_id = proteins_hda_id
        self.blastp_hda_id = blastp_hda_id
        self.blastx_hda_id = blastx_hda_id
        self.interproscan_hda_id = interproscan_hda_id
Arthur Le Bars's avatar
Arthur Le Bars committed

def get_sp_workflow_param(sp_dict, main_dir, config, workflow_type):
Arthur Le Bars's avatar
Arthur Le Bars committed
    """
    """

    run_workflow_for_current_organism = RunWorkflow(parameters_dictionary=sp_dict)

    # Verifying the galaxy container is running
    if not utilities_bioblend.check_galaxy_state(network_name=run_workflow_for_current_organism.genus_species,
Arthur Le Bars's avatar
Arthur Le Bars committed
                                    script_dir=run_workflow_for_current_organism.script_dir):
        logging.critical("The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.genus_species)
        sys.exit()

    else:
Arthur Le Bars's avatar
Arthur Le Bars committed

        # Setting some of the instance attributes
        run_workflow_for_current_organism.main_dir = main_dir
        run_workflow_for_current_organism.species_dir = os.path.join(run_workflow_for_current_organism.main_dir,
                                                                     run_workflow_for_current_organism.genus_species +
                                                                     "/")

        # Parse the config yaml file
        run_workflow_for_current_organism.config = config
        # Set the instance url attribute --> TODO: the localhost rule in the docker-compose still doesn't work on scratchgmodv1
        run_workflow_for_current_organism.instance_url = "http://localhost:{0}/sp/{1}/galaxy/".format(
            run_workflow_for_current_organism.config[constants.CONF_ALL_HTTP_PORT],
            run_workflow_for_current_organism.genus_species)
Arthur Le Bars's avatar
Arthur Le Bars committed

        run_workflow_for_current_organism.instance = utilities_bioblend.get_galaxy_instance(
            instance_url=run_workflow_for_current_organism.instance_url,
            email=run_workflow_for_current_organism.config[constants.CONF_GALAXY_DEFAULT_ADMIN_EMAIL],
            password=run_workflow_for_current_organism.config[constants.CONF_GALAXY_DEFAULT_ADMIN_PASSWORD],
        )
        history_id = utilities_bioblend.get_history(
            instance=run_workflow_for_current_organism.instance,
            history_name=run_workflow_for_current_organism.history_name)
        run_workflow_for_current_organism.install_changesets_revisions_for_individual_tools()
        if workflow_type == constants_phaeo.WF_LOAD_GFF_JB:
            analyses_dict_list = run_workflow_for_current_organism.get_analyses()

            org_id = run_workflow_for_current_organism.add_organism_and_sync()
            genome_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
                analyses_dict_list=analyses_dict_list,
                analysis_name=run_workflow_for_current_organism.genome_analysis_name,
                analysis_programversion=run_workflow_for_current_organism.genome_analysis_programversion,
                analysis_sourcename=run_workflow_for_current_organism.genome_analysis_sourcename
            )
            ogs_analysis_id = run_workflow_for_current_organism.add_analysis_and_sync(
                analyses_dict_list=analyses_dict_list,
                analysis_name=run_workflow_for_current_organism.ogs_analysis_name,
                analysis_programversion=run_workflow_for_current_organism.ogs_analysis_programversion,
                analysis_sourcename=run_workflow_for_current_organism.ogs_analysis_sourcename
            )

Loraine Gueguen's avatar
Loraine Gueguen committed
            run_workflow_for_current_organism.import_datasets_into_history()
Loraine Guéguen's avatar
Loraine Guéguen committed
            # Create the StrainWorkflowParam object holding all attributes needed for the workflow
            sp_wf_param = StrainWorkflowParam(
                genus_species=run_workflow_for_current_organism.genus_species,
                strain_sex=run_workflow_for_current_organism.strain_sex,
Loraine Gueguen's avatar
Loraine Gueguen committed
                genus_uppercase = run_workflow_for_current_organism.genus_uppercase,
Loraine Guéguen's avatar
Loraine Guéguen committed
                full_name=run_workflow_for_current_organism.full_name,
                species_folder_name=run_workflow_for_current_organism.species_folder_name,
Loraine Gueguen's avatar
Loraine Gueguen committed
                chado_species_name=run_workflow_for_current_organism.chado_species_name,
Loraine Guéguen's avatar
Loraine Guéguen committed
                org_id=org_id,
                genome_analysis_id=genome_analysis_id,
                ogs_analysis_id=ogs_analysis_id,
Loraine Gueguen's avatar
Loraine Gueguen committed
                genome_hda_id=run_workflow_for_current_organism.genome_hda_id,
                gff_hda_id=run_workflow_for_current_organism.gff_hda_id,
                transcripts_hda_id=run_workflow_for_current_organism.transcripts_hda_id,
                proteins_hda_id=run_workflow_for_current_organism.proteins_hda_id,
                blastp_hda_id=run_workflow_for_current_organism.blastp_hda_id,
                blastx_hda_id=run_workflow_for_current_organism.blastx_hda_id,
                interproscan_hda_id=run_workflow_for_current_organism.interproscan_hda_id,
Loraine Guéguen's avatar
Loraine Guéguen committed
                history_id=history_id,
                instance=run_workflow_for_current_organism.instance
Loraine Guéguen's avatar
Loraine Guéguen committed
            )
            sp_wf_param.check_param_for_workflow_load_fasta_gff_jbrowse()
            ids = run_workflow_for_current_organism.add_organism_blastp_analysis()
            org_id = ids["org_id"]
            blastp_analysis_id = ids["blastp_analysis_id"]
Loraine Gueguen's avatar
Loraine Gueguen committed
            run_workflow_for_current_organism.import_datasets_into_history()
Arthur Le Bars's avatar
Arthur Le Bars committed

Loraine Guéguen's avatar
Loraine Guéguen committed
            # Create the StrainWorkflowParam object holding all attributes needed for the workflow
            sp_wf_param = StrainWorkflowParam(
                genus_species=run_workflow_for_current_organism.genus_species,
                strain_sex=run_workflow_for_current_organism.strain_sex,
Loraine Gueguen's avatar
Loraine Gueguen committed
                genus_uppercase = run_workflow_for_current_organism.genus_uppercase,
Loraine Guéguen's avatar
Loraine Guéguen committed
                full_name=run_workflow_for_current_organism.full_name,
                species_folder_name=run_workflow_for_current_organism.species_folder_name,
Loraine Gueguen's avatar
Loraine Gueguen committed
                chado_species_name=run_workflow_for_current_organism.chado_species_name,
Loraine Guéguen's avatar
Loraine Guéguen committed
                org_id=org_id,
                blastp_analysis_id=blastp_analysis_id,
Loraine Gueguen's avatar
Loraine Gueguen committed
                genome_hda_id=run_workflow_for_current_organism.genome_hda_id,
                gff_hda_id=run_workflow_for_current_organism.gff_hda_id,
                transcripts_hda_id=run_workflow_for_current_organism.transcripts_hda_id,
                proteins_hda_id=run_workflow_for_current_organism.proteins_hda_id,
                blastp_hda_id=run_workflow_for_current_organism.blastp_hda_id,
                blastx_hda_id=run_workflow_for_current_organism.blastx_hda_id,
                interproscan_hda_id=run_workflow_for_current_organism.interproscan_hda_id,
Loraine Guéguen's avatar
Loraine Guéguen committed
                history_id=history_id,
                instance=run_workflow_for_current_organism.instance
Loraine Guéguen's avatar
Loraine Guéguen committed
            )
            sp_wf_param.check_param_for_workflow_blastp()
Arthur Le Bars's avatar
Arthur Le Bars committed

            ids = run_workflow_for_current_organism.add_organism_interproscan_analysis()
            org_id = ids["org_id"]
            interpro_analysis_id = ids["interpro_analysis_id"]
Loraine Gueguen's avatar
Loraine Gueguen committed
            run_workflow_for_current_organism.import_datasets_into_history()
Loraine Guéguen's avatar
Loraine Guéguen committed
            # Create the StrainWorkflowParam object holding all attributes needed for the workflow
            sp_wf_param = StrainWorkflowParam(
                genus_species=run_workflow_for_current_organism.genus_species,
                strain_sex=run_workflow_for_current_organism.strain_sex,
Loraine Gueguen's avatar
Loraine Gueguen committed
                genus_uppercase = run_workflow_for_current_organism.genus_uppercase,
Loraine Guéguen's avatar
Loraine Guéguen committed
                full_name=run_workflow_for_current_organism.full_name,
                species_folder_name=run_workflow_for_current_organism.species_folder_name,
Loraine Gueguen's avatar
Loraine Gueguen committed
                chado_species_name=run_workflow_for_current_organism.chado_species_name,
Loraine Guéguen's avatar
Loraine Guéguen committed
                org_id=org_id,
                interpro_analysis_id=interpro_analysis_id,
Loraine Gueguen's avatar
Loraine Gueguen committed
                genome_hda_id=run_workflow_for_current_organism.genome_hda_id,
                gff_hda_id=run_workflow_for_current_organism.gff_hda_id,
                transcripts_hda_id=run_workflow_for_current_organism.transcripts_hda_id,
                proteins_hda_id=run_workflow_for_current_organism.proteins_hda_id,
                blastp_hda_id=run_workflow_for_current_organism.blastp_hda_id,
                blastx_hda_id=run_workflow_for_current_organism.blastx_hda_id,
                interproscan_hda_id=run_workflow_for_current_organism.interproscan_hda_id,
Loraine Guéguen's avatar
Loraine Guéguen committed
                history_id=history_id,
                instance=run_workflow_for_current_organism.instance
Loraine Guéguen's avatar
Loraine Guéguen committed
            )
            sp_wf_param.check_param_for_workflow_interpro()
Loraine Guéguen's avatar
Loraine Guéguen committed

Arthur Le Bars's avatar
Arthur Le Bars committed


def install_changesets_revisions_from_workflow(instance, workflow_path):
    """
    Read a .ga file to extract the information about the different tools called. 
    Check if every tool is installed via a "show_tool".
    If a tool is not installed (versions don't match), send a warning to the logger and install the required changeset (matching the tool version)
    Doesn't do anything if versions match

    :return:
    """

    logging.info("Validating that installed tools versions and changesets match workflow versions")

    # Load the workflow file (.ga) in a buffer
    with open(workflow_path, 'r') as ga_in_file:

        # Then store the decoded json dictionary
        workflow_dict = json.load(ga_in_file)

        # Look up every "step_id" looking for tools
Loraine Gueguen's avatar
Loraine Gueguen committed
        for step in workflow_dict["steps"].values():
            if step["tool_id"]:
Arthur Le Bars's avatar
Arthur Le Bars committed
                # Check if an installed version matches the workflow tool version
                # (If it's not installed, the show_tool version returned will be a default version with the suffix "XXXX+0")
                utilities_bioblend.install_repository_revision(tool_id=step["tool_id"],
                                                               version=step["tool_version"],
                                                               changeset_revision=step["tool_shed_repository"]["changeset_revision"],
                                                               instance=instance)
Arthur Le Bars's avatar
Arthur Le Bars committed

Loraine Gueguen's avatar
Loraine Gueguen committed
    logging.info("Tools versions and changeset_revisions from workflow validated")
Arthur Le Bars's avatar
Arthur Le Bars committed

    parser = argparse.ArgumentParser(description="Run Galaxy workflows, specific to Phaeoexplorer data")

    parser.add_argument("input",
                        type=str,
                        help="Input file (yml)")

    parser.add_argument("-v", "--verbose",
                        help="Increase output verbosity",
                        action="store_true")

    parser.add_argument("--config",
                        type=str,
                        help="Config path, default to the 'config' file inside the script repository")

    parser.add_argument("--main-directory",
                        type=str,
                        help="Where the stack containers will be located, defaults to working directory")
    parser.add_argument("--workflow", "-w",
                        type=str,
                        help="Worfklow to run. Available options: load_fasta_gff_jbrowse, blast, interpro")
Loraine Gueguen's avatar
Loraine Gueguen committed
    bioblend_logger = logging.getLogger("bioblend")
    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)
Loraine Gueguen's avatar
Loraine Gueguen committed
        bioblend_logger.setLevel(logging.DEBUG)
Loraine Gueguen's avatar
Loraine Gueguen committed
        bioblend_logger.setLevel(logging.INFO)
    # Parsing the config file if provided, using the default config otherwise
Loraine Gueguen's avatar
Loraine Gueguen committed
    if args.config:
        config_file = os.path.abspath(args.config)
    else:
        config_file = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), constants.DEFAULT_CONFIG)
    config = utilities.parse_config(config_file)

        main_dir = os.path.abspath(args.main_directory)
    sp_dict_list = utilities.parse_input(args.input)
    workflow_type = None
    #  Checking if user specified a workflow to run
    if not args.workflow:
        logging.critical("No workflow type specified, exiting")
        sys.exit()
    elif args.workflow in constants_phaeo.WORKFLOW_VALID_TYPES:
        workflow_type = args.workflow
    logging.info("Workflow type set to '%s'" % workflow_type)
Arthur Le Bars's avatar
Arthur Le Bars committed
    script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))
    all_sp_workflow_dict = {}
    if workflow_type == constants_phaeo.WF_LOAD_GFF_JB:
        for sp_dict in sp_dict_list:
            # Add and retrieve all analyses/organisms for the current input species and add their IDs to the input dictionary
            sp_wf_param = get_sp_workflow_param(
                workflow_type=constants_phaeo.WF_LOAD_GFF_JB)
Arthur Le Bars's avatar
Arthur Le Bars committed

            current_sp_genus_species = sp_wf_param.genus_species
            current_sp_strain_sex = sp_wf_param.strain_sex
Arthur Le Bars's avatar
Arthur Le Bars committed

            # Add the species dictionary to the complete dictionary
            # This dictionary contains every organism present in the input file
            # Its structure is the following:
            # {genus species: {strain1_sex1: {variables_key: variables_values}, strain1_sex2: {variables_key: variables_values}}}
            if not current_sp_genus_species in all_sp_workflow_dict.keys():
                all_sp_workflow_dict[current_sp_genus_species] = {current_sp_strain_sex: sp_wf_param}
            else:
                if not current_sp_strain_sex in all_sp_workflow_dict[current_sp_genus_species].keys():
                    all_sp_workflow_dict[current_sp_genus_species][current_sp_strain_sex] = sp_wf_param
                else:
                    logging.error("Duplicate organism with 'genus_species' = '{0}' and 'strain_sex' = '{1}'".format(current_sp_genus_species, current_sp_strain_sex))
        for species, strains in all_sp_workflow_dict.items():
            strains_list = list(strains.keys())
            strains_count = len(strains_list)

Loraine Guéguen's avatar
Loraine Guéguen committed
            if strains_count == 1:
                logging.info("Input species %s: 1 strain detected in input dictionary" % species)
                strain_sex = list(strains.keys())[0]
                sp_wf_param = strains[strain_sex]

                # Set workflow path (1 organism)
                workflow_path = os.path.join(os.path.abspath(script_dir), constants_phaeo.WORKFLOWS_PATH, constants_phaeo.WF_LOAD_GFF_JB_1_ORG_FILE)

                # Check if the versions of tools specified in the workflow are installed in galaxy
                install_changesets_revisions_from_workflow(workflow_path=workflow_path, instance=sp_wf_param.instance)

                # Set the workflow parameters (individual tools runtime parameters in the workflow)
                workflow_parameters = {}
                # Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_FASTA] = {
                    "organism": sp_wf_param.org_id,
                    "analysis_id": sp_wf_param.genome_analysis_id,
Loraine Gueguen's avatar
Loraine Gueguen committed
                    "do_update": "true"}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE] = {}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_LOAD_GFF] = {
                    "organism": sp_wf_param.org_id,
                    "analysis_id": sp_wf_param.ogs_analysis_id}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_FEATURE_SYNC] = {
                    "organism_id": sp_wf_param.org_id}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_POPULATE_VIEWS] = {}
                workflow_parameters[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_INDEX] = {}

                # Set datamap (mapping of input files in the workflow)
                datamap = {}
                datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GENOME] = {"src": "hda", "id": sp_wf_param.genome_hda_id}
                datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_GFF] = {"src": "hda", "id": sp_wf_param.gff_hda_id}
                datamap[constants_phaeo.WF_LOAD_GFF_JB_1_ORG_INPUT_PROTEINS] = {"src": "hda", "id": sp_wf_param.proteins_hda_id}

                with open(workflow_path, 'r') as ga_in_file:
Arthur Le Bars's avatar
Arthur Le Bars committed

                    # Store the decoded json dictionary
                    workflow_dict = json.load(ga_in_file)
                    workflow_name = workflow_dict["name"]

                    # For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
                    # as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
                    # Scratchgmod test: need "http" (or "https"), the hostname (+ port)
Loraine Gueguen's avatar
Loraine Gueguen committed
                    if constants.CONF_JBROWSE_MENU_URL not in config.keys():
                        # default
                        root_url = "https://{0}".format(config[constants.CONF_ALL_HOSTNAME])
                    else:
Loraine Gueguen's avatar
Loraine Gueguen committed
                        root_url = config[constants.CONF_JBROWSE_MENU_URL]
                    species_strain_sex = sp_wf_param.chado_species_name.replace(" ", "-")
Loraine Gueguen's avatar
Loraine Gueguen committed
                    jbrowse_menu_url = "{root_url}/sp/{genus_sp}/feature/{Genus}/{species_strain_sex}/mRNA/{id}".format(
                        root_url=root_url,
                        genus_sp=sp_wf_param.genus_species,
                        Genus=sp_wf_param.genus_uppercase,
Loraine Gueguen's avatar
Loraine Gueguen committed
                        species_strain_sex=species_strain_sex,
                        id="{id}")
                    # Replace values in the workflow dictionary
                    jbrowse_tool_state = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JBROWSE]["tool_state"]
Loraine Gueguen's avatar
Loraine Gueguen committed
                    jbrowse_tool_state = jbrowse_tool_state.replace("__MENU_URL_ORG__", jbrowse_menu_url)
                    jb_to_container_tool_state = workflow_dict["steps"][constants_phaeo.WF_LOAD_GFF_JB_1_ORG_STEP_JB_TO_CONTAINER]["tool_state"]
Loraine Gueguen's avatar
Loraine Gueguen committed
                    jb_to_container_tool_state = jb_to_container_tool_state\
                        .replace("__DISPLAY_NAME_ORG__", sp_wf_param.full_name)\
                        .replace("__UNIQUE_ID_ORG__", sp_wf_param.species_folder_name)

                    # Import the workflow in galaxy as a dict
                    sp_wf_param.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

                    # Get its attributes
                    workflow_attributes = sp_wf_param.instance.workflows.get_workflows(name=workflow_name)
                    # Then get its ID (required to invoke the workflow)
                    workflow_id = workflow_attributes[0]["id"]  # Index 0 is the most recently imported workflow (the one we want)
Loraine Gueguen's avatar
Loraine Gueguen committed
                    logging.debug("Workflow ID: %s" % workflow_id)
                    # Check if the workflow is found
                    try:
                        show_workflow = sp_wf_param.instance.workflows.show_workflow(workflow_id=workflow_id)
                    except bioblend.ConnectionError:
                        logging.warning("Error finding workflow %s" % workflow_name)

Loraine Gueguen's avatar
Loraine Gueguen committed
                    # Finally, invoke the workflow along with its datamap, parameters and the history in which to invoke it
                    sp_wf_param.instance.workflows.invoke_workflow(
Loraine Gueguen's avatar
Loraine Gueguen committed
                        workflow_id=workflow_id,
                        history_id=sp_wf_param.history_id,
Loraine Gueguen's avatar
Loraine Gueguen committed
                        params=workflow_parameters,
                        inputs=datamap,
                        allow_tool_state_corrections=True)
                    logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance for the jobs state".format(workflow_name))
Loraine Gueguen's avatar
Loraine Gueguen committed
            if strains_count == 2:
                logging.info("Input organism %s: 2 species detected in input dictionary" % species)
                strain_sex_org1 = strains_list[0]
                strain_sex_org2 = strains_list[1]