Newer
Older

Arthur Le Bars
committed
#!/usr/bin/env python3

Arthur Le Bars
committed
import bioblend
import bioblend.galaxy.objects
import argparse
import os
import logging
import sys

Arthur Le Bars
committed
import json

Arthur Le Bars
committed
import time

Arthur Le Bars
committed

Arthur Le Bars
committed
from bioblend import galaxy

Arthur Le Bars
committed
import utilities
import speciesData

Arthur Le Bars
committed
"""

Arthur Le Bars
committed

Arthur Le Bars
committed
Usage: $ python3 gga_init.py -i input_example.yml --config [config file] [OPTIONS]

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
"""
Run a workflow into the galaxy instance's history of a given species

Arthur Le Bars
committed

Arthur Le Bars
committed
This script is made to work for a Phaeoexplorer-specific workflow, but can be adapted to run any workflow,

Arthur Le Bars
committed
provided the user creates their own workflow in a .ga format, and change the set_parameters function

Arthur Le Bars
committed
to have the correct parameters for their workflow

Arthur Le Bars
committed

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
def set_get_history(self):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Create or set the working history to the current species one

Arthur Le Bars
committed
:return:
"""

Arthur Le Bars
committed
try:
histories = self.instance.histories.get_histories(name=str(self.genus_species))

Arthur Le Bars
committed
self.history_id = histories[0]["id"]
logging.debug("History ID set for {0}: {1}".format(self.full_name, self.history_id))

Arthur Le Bars
committed
except IndexError:
logging.info("Creating history for %s" % self.full_name)
self.instance.histories.create_history(name=str(self.full_name))
histories = self.instance.histories.get_histories(name=str(self.genus_species))

Arthur Le Bars
committed
self.history_id = histories[0]["id"]
logging.debug("History ID set for {0}: {1}".format(self.full_name, self.history_id))

Arthur Le Bars
committed
return self.history_id
def get_instance_attributes(self):
"""
retrieves instance attributes:
- working history ID
- libraries ID (there should only be one library!)
- datasets IDs
:return:
"""

Arthur Le Bars
committed

Arthur Le Bars
committed
self.set_get_history()

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.debug("History ID: %s" % self.history_id)

Arthur Le Bars
committed
libraries = self.instance.libraries.get_libraries() # normally only one library
library_id = self.instance.libraries.get_libraries()[0]["id"] # project data folder/library

Arthur Le Bars
committed
logging.debug("Library ID: %s" % self.library_id)
instance_source_data_folders = self.instance.libraries.get_folders(library_id=library_id)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Access folders via their absolute path
genome_folder = self.instance.libraries.get_folders(library_id=library_id, name="/genome/" + str(self.species_folder_name) + "/v" + str(self.genome_version))
annotation_folder = self.instance.libraries.get_folders(library_id=library_id, name="/annotation/" + str(self.species_folder_name) + "/OGS" + str(self.ogs_version))

Arthur Le Bars
committed
# Get their IDs
genome_folder_id = genome_folder[0]["id"]
annotation_folder_id = annotation_folder[0]["id"]
# Get the content of the folders
genome_folder_content = self.instance.folders.show_folder(folder_id=genome_folder_id, contents=True)
annotation_folder_content = self.instance.folders.show_folder(folder_id=annotation_folder_id, contents=True)
# Find genome folder datasets
genome_fasta_ldda_id = genome_folder_content["folder_contents"][0]["ldda_id"]
annotation_gff_ldda_id, annotation_proteins_ldda_id, annotation_transcripts_ldda_id = None, None, None

Arthur Le Bars
committed
# Several dicts in the annotation folder content (one dict = one file)
for k, v in annotation_folder_content.items():
if k == "folder_contents":
for d in v:
if "proteins" in d["name"]:
annotation_proteins_ldda_id = d["ldda_id"]
if "transcripts" in d["name"]:
annotation_transcripts_ldda_id = d["ldda_id"]
if ".gff" in d["name"]:
annotation_gff_ldda_id = d["ldda_id"]

Arthur Le Bars
committed
# Minimum datasets to populate tripal views --> will not work if these files are not assigned in the input file

Arthur Le Bars
committed
self.datasets["genome_file"] = genome_fasta_ldda_id
self.datasets["gff_file"] = annotation_gff_ldda_id
self.datasets["proteins_file"] = annotation_proteins_ldda_id
self.datasets["transcripts_file"] = annotation_transcripts_ldda_id
return {"history_id": self.history_id, "library_id": library_id, "datasets": self.datasets}

Arthur Le Bars
committed

Arthur Le Bars
committed
def connect_to_instance(self):
"""
Test the connection to the galaxy instance for the current organism
Exit if we cannot connect to the instance
"""
logging.debug("Connecting to the galaxy instance (%s)" % self.instance_url)

Arthur Le Bars
committed
self.instance = galaxy.GalaxyInstance(url=self.instance_url,

Arthur Le Bars
committed
email=self.config["galaxy_default_admin_email"],
password=self.config["galaxy_default_admin_password"]

Arthur Le Bars
committed
)

Arthur Le Bars
committed
try:
self.instance.histories.get_histories()
except bioblend.ConnectionError:
logging.critical("Cannot connect to galaxy instance (%s) " % self.instance_url)

Arthur Le Bars
committed
sys.exit()
else:
logging.debug("Successfully connected to galaxy instance (%s) " % self.instance_url)

Arthur Le Bars
committed
def return_instance(self):
return self.instance
def install_changesets_revisions_for_individual_tools(self):

Arthur Le Bars
committed
"""
This function is used to verify that installed tools called outside workflows have the correct versions and changesets
If it finds versions don't match, will install the correct version + changeset in the instance
Doesn't do anything if versions match
:return:
"""
self.connect_to_instance()
logging.info("Validating installed individual tools versions and changesets")

Arthur Le Bars
committed
# Verify that the add_organism and add_analysis versions are correct in the toolshed
add_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.4+galaxy0")
add_analysis_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.4+galaxy0")
get_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.4+galaxy0")
get_analysis_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.4+galaxy0")
# changeset for 2.3.4+galaxy0 has to be manually found because there is no way to get the wanted changeset of a non installed tool via bioblend
# except for workflows (.ga) that already contain the changeset revisions inside the steps ids
toolshed_dict = get_organism_tool["tool_shed_repository"]
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
logging.warning("Installing changeset revision {0} for {1}".format(changeset_revision, name))
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
toolshed_dict = changeset_revision["tool_shed_repository"]
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
logging.warning("Installing changeset revision {0} for {1}".format(changeset_revision, name))
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
toolshed_dict = add_organism_tool["tool_shed_repository"]
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
logging.warning("Installing changeset revision {0} for {1}".format(changeset_revision, name))
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
toolshed_dict = add_analysis_tool["tool_shed_repository"]
logging.warning("Changeset for %s is not installed" % toolshed_dict["name"])
name = toolshed_dict["name"]
owner = toolshed_dict["owner"]
toolshed = "https://" + toolshed_dict["tool_shed"]
logging.warning("Installing changeset revision {0} for {1}".format(changeset_revision, name))
self.instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
logging.info("Individual tools versions and changesets validated")
def tripal_synchronize_organism_analyses(self):
"""
"""
show_tool_tripal_sync = self.instance.tools.show_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0", io_details=True)
org_sync = "toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0"
org_sync = self.instance.tools.run_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/tripal_organism_sync/organism_sync/3.2.1.0",
history_id=self.history_id,
tool_inputs={"organism_id": "2"})
org_sync_job_out = org_sync["outputs"]
def add_organism_ogs_genome_analyses(self):
"""
Add OGS and genome vX analyses to Chado database
Required for Chado Load Tripal Synchronize workflow (which should be ran as the first workflow)
Called outside workflow for practical reasons (Chado add doesn't have an input link for analysis or organism)

Arthur Le Bars
committed
:return:

Arthur Le Bars
committed
"""
self.connect_to_instance()

Arthur Le Bars
committed
self.set_get_history()

Arthur Le Bars
committed

Arthur Le Bars
committed
get_organism_tool = self.instance.tools.show_tool("toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/2.3.4+galaxy0")
get_organisms = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_get_organisms/organism_get_organisms/%s" % tool_version,

Arthur Le Bars
committed
history_id=self.history_id,
time.sleep(10) # Ensure the tool has had time to complete
org_outputs = get_organisms["outputs"] # Outputs from the get_organism tool
org_job_out_id = org_outputs[0]["id"] # ID of the get_organism output dataset (list of dicts)
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id) # Download the dataset
org_output = json.loads(org_json_output) # Turn the dataset into a list for parsing
# Look up list of outputs (dictionaries)
for organism_output_dict in org_output:
if organism_output_dict["genus"] == self.genus and organism_output_dict["species"] == "{0} {1}".format(self.species, self.sex):
correct_organism_id = str(organism_output_dict["organism_id"]) # id needs to be a str to be recognized by chado tools
org_id = str(correct_organism_id)
if org_id is None:
if self.common == "" or self.common is None:
add_org_job = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.abbreviation})
org_job_out_id = add_org_job["outputs"][0]["id"]
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id)
org_output = json.loads(org_json_output)
org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
else:
add_org_job = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/%s" % tool_version,
history_id=self.history_id,
tool_inputs={"abbr": self.abbreviation,
"genus": self.genus_uppercase,
"species": self.chado_species_name,
"common": self.common})
org_job_out_id = add_org_job["outputs"][0]["id"]
org_json_output = self.instance.datasets.download_dataset(dataset_id=org_job_out_id)
org_output = json.loads(org_json_output)
org_id = str(org_output["organism_id"]) # id needs to be a str to be recognized by chado tools
get_analyses = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/%s" % tool_version,
history_id=self.history_id,
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
time.sleep(10)
analysis_outputs = get_analyses["outputs"]
analysis_job_out_id = analysis_outputs[0]["id"]
analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
analysis_output = json.loads(analysis_json_output)
ogs_analysis_id = None
genome_analysis_id = None
# Look up list of outputs (dictionaries)
for analysis_output_dict in analysis_output:
if analysis_output_dict["name"] == self.full_name_lowercase + " OGS" + self.ogs_version:
ogs_analysis_id = str(analysis_output_dict["analysis_id"])
if analysis_output_dict["name"] == self.full_name_lowercase + " genome v" + self.genome_version:
genome_analysis_id = str(analysis_output_dict["analysis_id"])
if ogs_analysis_id is None:
add_ogs_analysis_job = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/%s" % tool_version,
history_id=self.history_id,
tool_inputs={"name": self.full_name_lowercase + " OGS" + self.ogs_version,
"program": "Performed by Genoscope",
"programversion": str(self.sex + " OGS" + self.ogs_version),
"sourcename": "Genoscope",
"date_executed": self.date})
analysis_outputs = add_ogs_analysis_job["outputs"]
analysis_job_out_id = analysis_outputs[0]["id"]
analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
analysis_output = json.loads(analysis_json_output)
if genome_analysis_id is None:
add_genome_analysis_job = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/%s" % tool_version,
history_id=self.history_id,
tool_inputs={"name": self.full_name_lowercase + " genome v" + self.genome_version,
"program": "Performed by Genoscope",
"programversion": str(self.sex + "genome v" + self.genome_version),
"sourcename": "Genoscope",
"date_executed": self.date})
analysis_outputs = add_genome_analysis_job["outputs"]
analysis_job_out_id = analysis_outputs[0]["id"]
analysis_json_output = self.instance.datasets.download_dataset(dataset_id=analysis_job_out_id)
analysis_output = json.loads(analysis_json_output)
genome_analysis_id = str(analysis_output["analysis_id"])
# print({"org_id": org_id, "genome_analysis_id": genome_analysis_id, "ogs_analysis_id": ogs_analysis_id})
return({"org_id": org_id, "genome_analysis_id": genome_analysis_id, "ogs_analysis_id": ogs_analysis_id})
def add_interproscan_analysis(self):
"""
"""

Arthur Le Bars
committed
# Add Interpro analysis to chado
logging.info("Adding Interproscan analysis to the instance's chado database")

Arthur Le Bars
committed
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.4+galaxy0",

Arthur Le Bars
committed
history_id=self.history_id,
tool_inputs={"name": "InterproScan on OGS%s" % self.ogs_version,
"program": "InterproScan",
"programversion": "OGS%s" % self.ogs_version,
"sourcename": "Genoscope",
"date_executed": self.date})
def get_interpro_analysis_id(self):
"""
"""
# Get interpro ID
interpro_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.4+galaxy0",
history_id=self.history_id,
tool_inputs={"name": "InterproScan on OGS%s" % self.ogs_version})
interpro_analysis_job_out = interpro_analysis["outputs"][0]["id"]
interpro_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=interpro_analysis_job_out)
try:
interpro_analysis_output = json.loads(interpro_analysis_json_output)[0]
self.interpro_analysis_id = str(interpro_analysis_output["analysis_id"])
except IndexError as exc:
logging.critical("No matching InterproScan analysis exists in the instance's chado database")
sys.exit(exc)
return self.interpro_analysis_id
def add_blastp_diamond_analysis(self):
"""
"""

Arthur Le Bars
committed
# Add Blastp (diamond) analysis to chado
logging.info("Adding Blastp Diamond analysis to the instance's chado database")

Arthur Le Bars
committed
self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_add_analysis/analysis_add_analysis/2.3.3",
history_id=self.history_id,
tool_inputs={"name": "Diamond on OGS%s" % self.ogs_version,
"program": "Diamond",
"programversion": "OGS%s" % self.ogs_version,
"sourcename": "Genoscope",
"date_executed": self.date})
def get_blastp_diamond_analysis_id(self):
"""
"""
# Get blasp ID
blast_diamond_analysis = self.instance.tools.run_tool(
tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_analysis_get_analyses/analysis_get_analyses/2.3.3",
history_id=self.history_id,
tool_inputs={"name": "Diamond on OGS%s" % self.ogs_version})
blast_diamond_analysis_job_out = blast_diamond_analysis["outputs"][0]["id"]
blast_diamond_analysis_json_output = self.instance.datasets.download_dataset(dataset_id=blast_diamond_analysis_job_out)
try:
blast_diamond_analysis_output = json.loads(blast_diamond_analysis_json_output)[0]
self.blast_diamond_analysis_id = str(blast_diamond_analysis_output["analysis_id"])

Arthur Le Bars
committed
except IndexError as exc:
logging.critical("No matching InterproScan analysis exists in the instance's chado database")
sys.exit(exc)
return self.blast_diamond_analysis_id

Arthur Le Bars
committed

Arthur Le Bars
committed

Arthur Le Bars
committed
def run_workflow(self, workflow_path, workflow_parameters, workflow_name, datamap):

Arthur Le Bars
committed
"""

Arthur Le Bars
committed
Run a workflow in galaxy
Requires the .ga file to be loaded as a dictionary (optionally could be uploaded as a raw file)

Arthur Le Bars
committed
:param workflow_name:
:param workflow_parameters:
:param datamap:
:return:
"""
logging.info("Importing workflow %s" % str(workflow_path))

Arthur Le Bars
committed

Arthur Le Bars
committed
# Load the workflow file (.ga) in a buffer
with open(workflow_path, 'r') as ga_in_file:
# Then store the decoded json dictionary

Arthur Le Bars
committed

Arthur Le Bars
committed
# In case of the Jbrowse workflow, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
# Scratchgmod test: need "http" (or "https"), the hostname (+ port)

Loraine Gueguen
committed
if "jbrowse_menu_url" not in self.config.keys():
jbrowse_menu_url = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=self.config["hostname"], genus_sp=self.genus_species, Genus=self.genus_uppercase, species=self.species, id="{id}")

Arthur Le Bars
committed
else:

Loraine Gueguen
committed
jbrowse_menu_url = self.config["jbrowse_menu_url"]

Arthur Le Bars
committed
if workflow_name == "Jbrowse":

Arthur Le Bars
committed
workflow_dict["steps"]["2"]["tool_state"] = workflow_dict["steps"]["2"]["tool_state"].replace("__MENU_URL__", jbrowse_menu_url)
# The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
# in galaxy --> define a naming method for these workflows
workflow_dict["steps"]["3"]["tool_state"] = workflow_dict["steps"]["3"]["tool_state"].replace("__FULL_NAME__", self.full_name).replace("__UNIQUE_ID__", self.species_folder_name)

Arthur Le Bars
committed
# Import the workflow in galaxy as a dict

Arthur Le Bars
committed
self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)

Arthur Le Bars
committed
# Get its attributes
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)

Arthur Le Bars
committed
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_attributes[0]["id"] # Index 0 is the most recently imported workflow (the one we want)

Arthur Le Bars
committed
show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)

Arthur Le Bars
committed
# Check if the workflow is found

Arthur Le Bars
committed
try:

Arthur Le Bars
committed
logging.debug("Workflow ID: %s" % workflow_id)

Arthur Le Bars
committed
except bioblend.ConnectionError:

Arthur Le Bars
committed
logging.warning("Error retrieving workflow attributes for workflow %s" % workflow_name)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it

Arthur Le Bars
committed
self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
history_id=self.history_id,
params=workflow_parameters,
inputs=datamap,

Arthur Le Bars
committed
allow_tool_state_corrections=True)

Arthur Le Bars
committed

Arthur Le Bars
committed
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance ({1}) for the jobs state".format(workflow_name, self.instance_url))
def get_invocation_report(self, workflow_name):
"""
Debugging method for workflows

Arthur Le Bars
committed
Simply logs and returns a report of the previous workflow invocation (execution of a workflow in
the instance via the API)
:param workflow_name:
:return:
"""
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)

Arthur Le Bars
committed
workflow_id = workflow_attributes[1]["id"] # Most recently imported workflow (index 1 in the list)
invocations = self.instance.workflows.get_invocations(workflow_id=workflow_id)

Arthur Le Bars
committed
invocation_id = invocations[1]["id"] # Most recent invocation
invocation_report = self.instance.invocations.get_invocation_report(invocation_id=invocation_id)
logging.debug(invocation_report)

Arthur Le Bars
committed
return invocation_report
def import_datasets_into_history(self):
Find datasets in a library, get their ID and import them into the current history if they are not already
:return:
"""
# Instanciate the instance
gio = GalaxyInstance(url=self.instance_url,

Arthur Le Bars
committed
email=self.config["galaxy_default_admin_email"],
password=self.config["galaxy_default_admin_password"])
prj_lib = gio.libraries.get_previews(name="Project Data")
library_id = prj_lib[0].id
instance_source_data_folders = self.instance.libraries.get_folders(library_id=str(library_id))

Arthur Le Bars
committed
folder_name = ""
# Loop over the folders in the library and map folders names to their IDs
for i in instance_source_data_folders:

Arthur Le Bars
committed
folders_ids[i["name"]] = i["id"]
# Iterating over the folders to find datasets and map datasets to their IDs
for k, v in folders_ids.items():

Arthur Le Bars
committed
if k == "/genome/{0}/v{1}".format(self.species_folder_name, self.genome_version):
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)

Arthur Le Bars
committed
for k2, v2 in sub_folder_content.items():

Arthur Le Bars
committed
self.datasets_name["genome_file"] = e["name"]
if k == "/annotation/{0}/OGS{1}".format(self.species_folder_name, self.ogs_version):
sub_folder_content = self.instance.folders.show_folder(folder_id=v, contents=True)

Arthur Le Bars
committed
for k2, v2 in sub_folder_content.items():
for e in v2:
if type(e) == dict:
if "transcripts" in e["name"]:
# the attributes datasets is set in the function get_instance_attributes()

Arthur Le Bars
committed
self.datasets_name["transcripts_file"] = e["name"]

Arthur Le Bars
committed
self.datasets_name["proteins_file"] = e["name"]
elif "gff" in e["name"]:
self.datasets["gff_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["gff_file"] = e["name"]
self.datasets["interproscan_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["interproscan_file"] = e["name"]
self.datasets["blast_diamond_file"] = e["ldda_id"]

Arthur Le Bars
committed
self.datasets_name["blast_diamond_file"] = e["name"]
history_datasets_li = self.instance.datasets.get_datasets()
genome_hda_id, gff_hda_id, transcripts_hda_id, proteins_hda_id, blast_diamond_hda_id, interproscan_hda_id = None, None, None, None, None, None
# Finding datasets in history (matching datasets names)
for dataset in history_datasets_li:
dataset_name = dataset["name"]
dataset_id = dataset["id"]
if dataset_name == "{0}_v{1}.fasta".format(self.dataset_prefix, self.genome_version):
genome_hda_id = dataset_id
if dataset_name == "{0}_OGS{1}.gff".format(self.dataset_prefix, self.ogs_version):
gff_hda_id = dataset_id
if dataset_name == "{0}_OGS{1}_transcripts.fasta".format(self.dataset_prefix, self.ogs_version):
transcripts_hda_id = dataset_id
if dataset_name == "{0}_OGS{1}_proteins.fasta".format(self.dataset_prefix, self.ogs_version):
proteins_hda_id = dataset_id
if dataset_name == "{0}_OGS{1}_blastx.xml".format(self.dataset_prefix, self.ogs_version):
blast_diamond_hda_id = dataset_id
# Import each dataset into history if it is not imported
logging.debug("Uploading datasets into history %s" % self.history_id)

Arthur Le Bars
committed
if genome_hda_id is None:
genome_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["genome_file"])
genome_hda_id = genome_dataset_upload["id"]
if gff_hda_id is None:
gff_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["gff_file"])
gff_hda_id = gff_dataset_upload["id"]
if transcripts_hda_id is None:
transcripts_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["transcripts_file"])
transcripts_hda_id = transcripts_dataset_upload["id"]
if proteins_hda_id is None:
proteins_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["proteins_file"])
proteins_hda_id = proteins_dataset_upload["id"]
if interproscan_hda_id is None:
try:
interproscan_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["interproscan_file"])
interproscan_hda_id = interproscan_dataset_upload["id"]
except Exception as exc:

Arthur Le Bars
committed
logging.debug("Interproscan file not found in library (history: {0})".format(self.history_id))
if blast_diamond_hda_id is None:
try:
blast_diamond_dataset_upload = self.instance.histories.upload_dataset_from_library(history_id=self.history_id, lib_dataset_id=self.datasets["blast_diamond_file"])
blast_diamond_hda_id = blast_diamond_upload["id"]
except Exception as exc:

Arthur Le Bars
committed
logging.debug("Blastp file not found in library (history: {0})".format(self.history_id))
logging.debug("History dataset IDs (hda_id) for %s:" % self.full_name)
logging.debug({"genome_hda_id": genome_hda_id,
"gff_hda_id": gff_hda_id,
"transcripts_hda_id": transcripts_hda_id,
"proteins_hda_id": proteins_hda_id,
"blast_diamond_hda_id": blast_diamond_hda_id,
"interproscan_hda_id": interproscan_hda_id})

Arthur Le Bars
committed
# Return a dict made of the hda ids
return {"genome_hda_id": genome_hda_id,
"gff_hda_id": gff_hda_id,
"transcripts_hda_id": transcripts_hda_id,
"proteins_hda_id": proteins_hda_id,
"blast_diamond_hda_id": blast_diamond_hda_id,
"interproscan_hda_id": interproscan_hda_id}
def get_datasets_hda_ids(self):
"""
Get the hda IDs of the datasets imported into an history

Arthur Le Bars
committed
As some tools will not work using the input datasets ldda IDs we need to retrieve the datasets IDs imported
into an history
:return:
"""
# List of all datasets in the instance (including outputs from jobs)
# "limit" and "offset" options *may* be used to restrict search to specific datasets but since
# there is no way to know which imported datasets are the correct ones depending on history content
# it's not currently used
history_datasets_li = self.instance.datasets.get_datasets()
genome_dataset_hda_id, gff_dataset_hda_id, transcripts_dataset_hda_id, proteins_datasets_hda_id = None, None, None, None
interproscan_dataset_hda_id, blast_diamond_dataset_hda_id = None, None

Arthur Le Bars
committed
# Match files imported in history names vs library datasets names to assign their respective hda_id
for dataset_dict in history_datasets_li:

Arthur Le Bars
committed
if dataset_dict["history_id"] == self.history_id:
if dataset_dict["name"] == self.datasets_name["genome_file"] and dataset_dict["id"] not in imported_datasets_ids:

Arthur Le Bars
committed
genome_dataset_hda_id = dataset_dict["id"]
elif dataset_dict["name"] == self.datasets_name["proteins_file"] and dataset_dict["id"] not in imported_datasets_ids:

Arthur Le Bars
committed
proteins_datasets_hda_id = dataset_dict["id"]
elif dataset_dict["name"] == self.datasets_name["transcripts_file"] and dataset_dict["id"] not in imported_datasets_ids:

Arthur Le Bars
committed
transcripts_dataset_hda_id = dataset_dict["id"]
elif dataset_dict["name"] == self.datasets_name["gff_file"] and dataset_dict["id"] not in imported_datasets_ids:

Arthur Le Bars
committed
gff_dataset_hda_id = dataset_dict["id"]
if "interproscan_file" in self.datasets_name.keys():
if dataset_dict["name"] == self.datasets_name["interproscan_file"] and dataset_dict["id"] not in imported_datasets_ids:

Arthur Le Bars
committed
interproscan_dataset_hda_id = dataset_dict["id"]

Arthur Le Bars
committed

Arthur Le Bars
committed
if "blast_diamond_file" in self.datasets_name.keys():
if dataset_dict["name"] == self.datasets_name["blast_diamond_file"] and dataset_dict["id"] not in imported_datasets_ids:

Arthur Le Bars
committed
blast_diamond_dataset_hda_id = dataset_dict["id"]

Arthur Le Bars
committed
logging.debug("Genome dataset hda id: %s" % genome_dataset_hda_id)
logging.debug("Proteins dataset hda ID: %s" % proteins_datasets_hda_id)
logging.debug("Transcripts dataset hda ID: %s" % transcripts_dataset_hda_id)
logging.debug("GFF dataset hda ID: %s" % gff_dataset_hda_id)
logging.debug("InterproScan dataset hda ID: %s" % gff_dataset_hda_id)
logging.debug("Blast Diamond dataset hda ID: %s" % gff_dataset_hda_id)
# Add datasets IDs to already imported IDs (so we don't assign all the wrong IDs to the next organism if there is one)
imported_datasets_ids.append(genome_dataset_hda_id)
imported_datasets_ids.append(transcripts_dataset_hda_id)
imported_datasets_ids.append(proteins_datasets_hda_id)
imported_datasets_ids.append(gff_dataset_hda_id)
imported_datasets_ids.append(interproscan_dataset_hda_id)
imported_datasets_ids.append(blast_diamond_dataset_hda_id)
# Return a dict made of the hda ids

Arthur Le Bars
committed
return {"genome_hda_id": genome_dataset_hda_id, "transcripts_hda_id": transcripts_dataset_hda_id,
"proteins_hda_id": proteins_datasets_hda_id, "gff_hda_id": gff_dataset_hda_id,
"interproscan_hda_id": interproscan_dataset_hda_id,
"blast_diamond_hda_id": blast_diamond_dataset_hda_id,
"imported_datasets_ids": imported_datasets_ids}
def run_workflow(workflow_path, workflow_parameters, datamap, config, input_species_number):
"""
Run a workflow in galaxy
Requires the .ga file to be loaded as a dictionary (optionally could be uploaded as a raw file)
:param workflow_name:
:param workflow_parameters:
:param datamap:
:return:
"""
logging.info("Importing workflow %s" % str(workflow_path))
# Load the workflow file (.ga) in a buffer
with open(workflow_path, 'r') as ga_in_file:
# Then store the decoded json dictionary
workflow_dict = json.load(ga_in_file)
# In case of the Jbrowse workflow, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
# Scratchgmod test: need "http" (or "https"), the hostname (+ port)

Loraine Gueguen
committed
if "jbrowse_menu_url" not in config.keys():
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
jbrowse_menu_url = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=self.config["hostname"], genus_sp=self.genus_species, Genus=self.genus_uppercase, species=self.species, id="{id}")
else:
jbrowse_menu_url = config["menu_url"]
if workflow_name == "Jbrowse":
workflow_dict["steps"]["2"]["tool_state"] = workflow_dict["steps"]["2"]["tool_state"].replace("__MENU_URL__", jbrowse_menu_url)
# The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
# in galaxy --> define a naming method for these workflows
workflow_dict["steps"]["3"]["tool_state"] = workflow_dict["steps"]["3"]["tool_state"].replace("__FULL_NAME__", self.full_name).replace("__UNIQUE_ID__", self.species_folder_name)
# Import the workflow in galaxy as a dict
self.instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
# Get its attributes
workflow_attributes = self.instance.workflows.get_workflows(name=workflow_name)
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_attributes[0]["id"] # Index 0 is the most recently imported workflow (the one we want)
show_workflow = self.instance.workflows.show_workflow(workflow_id=workflow_id)
# Check if the workflow is found
try:
logging.debug("Workflow ID: %s" % workflow_id)
except bioblend.ConnectionError:
logging.warning("Error retrieving workflow attributes for workflow %s" % workflow_name)
# Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it
self.instance.workflows.invoke_workflow(workflow_id=workflow_id,
history_id=self.history_id,
params=workflow_parameters,
inputs=datamap,
allow_tool_state_corrections=True)
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance ({1}) for the jobs state".format(workflow_name, self.instance_url))
def create_sp_workflow_dict(sp_dict, main_dir, config):
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
"""
"""
sp_workflow_dict = {}
run_workflow_for_current_organism = RunWorkflow(parameters_dictionary=sp_dict)
# Verifying the galaxy container is running
if utilities.check_galaxy_state(genus_lowercase=run_workflow_for_current_organism.genus_lowercase,
species=run_workflow_for_current_organism.species,
script_dir=run_workflow_for_current_organism.script_dir):
# Starting
logging.info("run_workflow.py called for %s" % run_workflow_for_current_organism.full_name)
# Setting some of the instance attributes
run_workflow_for_current_organism.main_dir = main_dir
run_workflow_for_current_organism.species_dir = os.path.join(run_workflow_for_current_organism.main_dir,
run_workflow_for_current_organism.genus_species +
"/")
# Parse the config yaml file
run_workflow_for_current_organism.config = config
# Set the instance url attribute --> TODO: the localhost rule in the docker-compose still doesn't work on scratchgmodv1
run_workflow_for_current_organism.instance_url = "http://localhost:{0}/sp/{1}_{2}/galaxy/".format(
run_workflow_for_current_organism.config["http_port"],
run_workflow_for_current_organism.genus_lowercase,
run_workflow_for_current_organism.species)
run_workflow_for_current_organism.connect_to_instance()
history_id = run_workflow_for_current_organism.set_get_history()
run_workflow_for_current_organism.install_changesets_revisions_for_individual_tools()
ids = run_workflow_for_current_organism.add_organism_ogs_genome_analyses()
org_id = None
genome_analysis_id = None
ogs_analysis_id = None
org_id = ids["org_id"]
genome_analysis_id = ids["genome_analysis_id"]
ogs_analysis_id = ids["ogs_analysis_id"]
instance_attributes = run_workflow_for_current_organism.get_instance_attributes()
hda_ids = run_workflow_for_current_organism.import_datasets_into_history()
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
strain_sex = "{0}_{1}".format(run_workflow_for_current_organism.strain, run_workflow_for_current_organism.sex)
genus_species = run_workflow_for_current_organism.genus_species
# Create the dictionary holding all attributes needed to connect to the galaxy instance
attributes = {"genus": run_workflow_for_current_organism.genus,
"species": run_workflow_for_current_organism.species,
"genus_species": run_workflow_for_current_organism.genus_species,
"full_name": run_workflow_for_current_organism.full_name,
"species_folder_name": run_workflow_for_current_organism.species_folder_name,
"sex": run_workflow_for_current_organism.sex,
"strain": run_workflow_for_current_organism.strain,
"org_id": org_id,
"genome_analysis_id": genome_analysis_id,
"ogs_analysis_id": ogs_analysis_id,
"instance_attributes": instance_attributes,
"hda_ids": hda_ids,
"history_id": history_id,
"instance": run_workflow_for_current_organism.instance,
"instance_url": run_workflow_for_current_organism.instance_url,
"email": config["galaxy_default_admin_email"],
"password": config["galaxy_default_admin_password"]}
sp_workflow_dict[genus_species] = {strain_sex: attributes}
else:
logging.critical("The galaxy container for %s is not ready yet!" % run_workflow_for_current_organism.full_name)
sys.exit()
return sp_workflow_dict
def install_changesets_revisions_from_workflow(instance, workflow_path):
"""
Read a .ga file to extract the information about the different tools called.
Check if every tool is installed via a "show_tool".
If a tool is not installed (versions don't match), send a warning to the logger and install the required changeset (matching the tool version)
Doesn't do anything if versions match
:return:
"""
logging.info("Validating that installed tools versions and changesets match workflow versions")
# Load the workflow file (.ga) in a buffer
with open(workflow_path, 'r') as ga_in_file:
# Then store the decoded json dictionary
workflow_dict = json.load(ga_in_file)
# Look up every "step_id" looking for tools
for k, v in workflow_dict["steps"].items():
if v["tool_id"]:
# Get the descriptive dictionary of the installed tool (using the tool id in the workflow)
show_tool = instance.tools.show_tool(v["tool_id"])
# Check if an installed version matches the workflow tool version
# (If it's not installed, the show_tool version returned will be a default version with the suffix "XXXX+0")
if show_tool["version"] != v["tool_version"]:
# If it doesn't match, proceed to install of the correct changeset revision
toolshed = "https://" + v["tool_shed_repository"]["tool_shed"]
name = v["tool_shed_repository"]["name"]
owner = v["tool_shed_repository"]["owner"]
changeset_revision = v["tool_shed_repository"]["changeset_revision"]
logging.warning("Installed tool versions for tool {0} do not match the version required by the specified workflow, installing changeset {1}".format(name, changeset_revision))
# Install changeset
instance.toolshed.install_repository_revision(tool_shed_url=toolshed, name=name, owner=owner,
changeset_revision=changeset_revision,
install_tool_dependencies=True,
install_repository_dependencies=False,
install_resolver_dependencies=True)
else:
toolshed = "https://" + v["tool_shed_repository"]["tool_shed"]
name = v["tool_shed_repository"]["name"]
owner = v["tool_shed_repository"]["owner"]
changeset_revision = v["tool_shed_repository"]["changeset_revision"]
logging.debug("Installed tool versions for tool {0} match the version in the specified workflow (changeset {1})".format(name, changeset_revision))
logging.info("Tools versions and changesets from workflow validated")

Arthur Le Bars
committed
if __name__ == "__main__":

Loraine Gueguen
committed
parser = argparse.ArgumentParser(description="Run Galaxy workflows, specific to Phaeoexplorer data")

Arthur Le Bars
committed
parser.add_argument("input",
type=str,
help="Input file (yml)")
parser.add_argument("-v", "--verbose",
help="Increase output verbosity",

Arthur Le Bars
committed
action="store_true")
parser.add_argument("--config",
type=str,
help="Config path, default to the 'config' file inside the script repository")
parser.add_argument("--main-directory",
type=str,
help="Where the stack containers will be located, defaults to working directory")

Arthur Le Bars
committed

Arthur Le Bars
committed
parser.add_argument("--workflow", "-w",
type=str,
help="Worfklow to run")

Arthur Le Bars
committed
args = parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
logging.getLogger("urllib3").setLevel(logging.INFO)
logging.getLogger("bioblend").setLevel(logging.INFO)

Arthur Le Bars
committed

Arthur Le Bars
committed
# Parsing the config file if provided, using the default config otherwise
if not args.config:
args.config = os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), "config")
else:
args.config = os.path.abspath(args.config)
if not args.main_directory:
args.main_directory = os.getcwd()
else:
args.main_directory = os.path.abspath(args.main_directory)
sp_dict_list = utilities.parse_input(args.input)

Arthur Le Bars
committed
# # Checking if user specified a workflow to run
# if not args.workflow:
# logging.critical("No workflow specified, exiting")
# sys.exit()
# else:
# workflow = os.path.abspath(args.workflow)
script_dir = os.path.dirname(os.path.realpath(sys.argv[0]))
config = utilities.parse_config(args.config)
all_sp_workflow_dict = {}

Arthur Le Bars
committed
for sp_dict in sp_dict_list:

Arthur Le Bars
committed
# Add and retrieve all analyses/organisms for the current input species and add their IDs to the input dictionary
current_sp_workflow_dict = create_sp_workflow_dict(sp_dict, main_dir=args.main_directory, config=config)

Arthur Le Bars
committed
current_sp_key = list(current_sp_workflow_dict.keys())[0]
current_sp_value = list(current_sp_workflow_dict.values())[0]
current_sp_strain_sex_key = list(current_sp_value.keys())[0]
current_sp_strain_sex_value = list(current_sp_value.values())[0]
# Add the species dictionary to the complete dictionary
# This dictionary contains every organism present in the input file
# Its structure is the following:
# {genus species: {strain1_sex1: {variables_key: variables_values}, strain1_sex2: {variables_key: variables_values}}}
if not current_sp_key in all_sp_workflow_dict.keys():
all_sp_workflow_dict[current_sp_key] = current_sp_value

Arthur Le Bars
committed
else:
all_sp_workflow_dict[current_sp_key][current_sp_strain_sex_key] = current_sp_strain_sex_value
for k, v in all_sp_workflow_dict.items():
if len(list(v.keys())) == 1:
logging.info("Input organism %s: 1 species detected in input dictionary" % k)
# Set workflow path (1 organism)
workflow_path = os.path.join(os.path.abspath(script_dir), "workflows_phaeoexplorer/Galaxy-Workflow-chado_load_tripal_synchronize_jbrowse_1org_v2.ga")
# Set the galaxy instance variables
for k2, v2 in v.items():
instance_url = v2["instance_url"]
email = v2["email"]
password = v2["password"]
instance = galaxy.GalaxyInstance(url=instance_url, email=email, password=password)
# Check if the versions of tools specified in the workflow are installed in galaxy
install_changesets_revisions_from_workflow(workflow_path=workflow_path, instance=instance)
# Set datamap (mapping of input files in the workflow)
datamap = {}
# Set the workflow parameters (individual tools runtime parameters in the workflow)
workflow_parameters = {}
if len(list(v.keys())) == 2:
logging.info("Input organism %s: 2 species detected in input dictionary" % k)
# Set workflow path (2 organisms)
workflow_path = os.path.join(os.path.abspath(script_dir), "workflows_phaeoexplorer/Galaxy-Workflow-chado_load_tripal_synchronize_jbrowse_2org_v4.ga")
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
# Instance object required variables
instance_url, email, password = None, None, None
# Set the galaxy instance variables
for k2, v2 in v.items():
instance_url = v2["instance_url"]
email = v2["email"]
password = v2["password"]
instance = galaxy.GalaxyInstance(url=instance_url, email=email, password=password)
# Check if the versions of tools specified in the workflow are installed in galaxy
install_changesets_revisions_from_workflow(workflow_path=workflow_path, instance=instance)
# Get key names from the current organism (item 1 = organism 1, item 2 = organism 2)
organisms_key_names = list(v.keys())
org1_dict = v[organisms_key_names[0]]
org2_dict = v[organisms_key_names[1]]
history_id = org1_dict["history_id"]
# Organism 1 attributes
org1_genus = org1_dict["genus"]
org1_species = org1_dict["species"]
org1_genus_species = org1_dict["genus_species"]
org1_species_folder_name = org1_dict["species_folder_name"]
org1_full_name = org1_dict["full_name"]
org1_strain = org1_dict["sex"]
org1_sex = org1_dict["strain"]
org1_org_id = org1_dict["org_id"]
org1_genome_analysis_id = org1_dict["genome_analysis_id"]
org1_ogs_analysis_id = org1_dict["ogs_analysis_id"]
org1_genome_hda_id = org1_dict["hda_ids"]["genome_hda_id"]
org1_transcripts_hda_id = org1_dict["hda_ids"]["transcripts_hda_id"]
org1_proteins_hda_id = org1_dict["hda_ids"]["proteins_hda_id"]
org1_gff_hda_id = org1_dict["hda_ids"]["gff_hda_id"]
# Store these values into a dict for parameters logging/validation
org1_parameters_dict = {
"org1_genus": org1_genus,
"org1_species": org1_species,
"org1_genus_species": org1_genus_species,
"org1_species_folder_name": org1_species_folder_name,
"org1_full_name": org1_full_name,
"org1_strain": org1_strain,
"org1_sex": org1_sex,
"org1_org_id": org1_org_id,
"org1_genome_analysis_id": org1_genome_analysis_id,
"org1_ogs_analysis_id": org1_ogs_analysis_id,
"org1_genome_hda_id": org1_genome_hda_id,
"org1_transcripts_hda_id": org1_transcripts_hda_id,
"org1_proteins_hda_id": org1_proteins_hda_id,
"org1_gff_hda_id": org1_gff_hda_id,
}
# Look for empty parameters values, throw a critical error if a parameter value is invalid
for param_name, param_value in org1_parameters_dict.items():
if param_value is None or param_value == "":
logging.critical("Empty parameter value found for organism {0} (parameter: {1}, parameter value: {2})".format(org1_full_name, param_name, param_value))
# Organism 2 attributes
org2_genus = org2_dict["genus"]
org2_species = org2_dict["species"]
org2_genus_species = org2_dict["genus_species"]
org2_species_folder_name = org2_dict["species_folder_name"]
org2_full_name = org2_dict["full_name"]
org2_strain = org2_dict["sex"]
org2_sex = org2_dict["strain"]
org2_org_id = org2_dict["org_id"]
org2_genome_analysis_id = org2_dict["genome_analysis_id"]
org2_ogs_analysis_id = org2_dict["ogs_analysis_id"]
org2_genome_hda_id = org2_dict["hda_ids"]["genome_hda_id"]
org2_transcripts_hda_id = org2_dict["hda_ids"]["transcripts_hda_id"]
org2_proteins_hda_id = org2_dict["hda_ids"]["proteins_hda_id"]
org2_gff_hda_id = org2_dict["hda_ids"]["gff_hda_id"]
# Store these values into a dict for parameters logging/validation
org2_parameters_dict = {
"org2_genus": org2_genus,
"org2_species": org2_species,
"org2_genus_species": org2_genus_species,
"org2_species_folder_name": org2_species_folder_name,
"org2_full_name": org2_full_name,
"org2_strain": org2_strain,
"org2_sex": org2_sex,
"org2_org_id": org2_org_id,
"org2_genome_analysis_id": org2_genome_analysis_id,
"org2_ogs_analysis_id": org2_ogs_analysis_id,
"org2_genome_hda_id": org2_genome_hda_id,
"org2_transcripts_hda_id": org2_transcripts_hda_id,
"org2_proteins_hda_id": org2_proteins_hda_id,
"org2_gff_hda_id": org2_gff_hda_id,
}
# Look for empty parameters values, throw a critical error if a parameter value is invalid
for param_name, param_value in org2_parameters_dict.items():
if param_value is None or param_value == "":
logging.critical("Empty parameter value found for organism {0} (parameter: {1}, parameter value: {2})".format(org2_full_name, param_name, param_value))
jbrowse_menu_url_org1 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org1_genus_species, Genus=org1_genus[0].upper() + org1_genus[1:], species=org1_species, id="\{id\}")
jbrowse_menu_url_org2 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org2_genus_species, Genus=org2_genus[0].upper() + org2_genus[1:], species=org2_species, id="\{id\}")

Loraine Gueguen
committed
if "jbrowse_menu_url" not in config.keys():
jbrowse_menu_url_org1 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org1_genus_species, Genus=org1_genus[0].upper() + org1_genus[1:], species=org1_species, id="\{id\}")
jbrowse_menu_url_org2 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org2_genus_species, Genus=org2_genus[0].upper() + org2_genus[1:], species=org2_species, id="\{id\}")
else:

Loraine Gueguen
committed
jbrowse_menu_url_org1 = config["jbrowse_menu_url"]
jbrowse_menu_url_org2 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org2_genus_species, Genus=org2_genus[0].upper() + org2_genus[1:], species=org2_species, id="\{id\}")
# Source files association (ordered by their IDs in the workflow)
# WARNING: Be very careful about how the workflow is "organized" (i.e the order of the steps/datasets, check the .ga if there is any error)
GFF_FILE_ORG1 = "0"
GENOME_FASTA_FILE_ORG1 = "1"
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
PROTEINS_FASTA_FILE_ORG1 = "2"
GENOME_FASTA_FILE_ORG2 = "3"
GFF_FILE_ORG2 = "4"
PROTEINS_FASTA_FILE_ORG2 = "5"
LOAD_FASTA_ORG1 = "6"
JBROWSE_ORG1 = "7"
JRBOWSE_ORG2 = "8"
LOAD_GFF_ORG1 = "9"
JBROWSE_CONTAINER = "10"
SYNC_FEATURES_ORG1 = "11"
LOAD_FASTA_ORG2 = "12"
LOAD_GFF_ORG2 = "13"
SYNC_FEATURES_ORG2 = "14"
POPULATE_MAT_VIEWS = "15"
INDEX_TRIPAL_DATA = "16"
# Set the workflow parameters (individual tools runtime parameters in the workflow)
workflow_parameters = {}
# Input files have no parameters (they are set via assigning the hda IDs in the datamap parameter of the bioblend method)
workflow_parameters[GENOME_FASTA_FILE_ORG1] = {}
workflow_parameters[GFF_FILE_ORG1] = {}
workflow_parameters[PROTEINS_FASTA_FILE_ORG1] = {}
workflow_parameters[GENOME_FASTA_FILE_ORG2] = {}
workflow_parameters[GFF_FILE_ORG2] = {}
workflow_parameters[PROTEINS_FASTA_FILE_ORG2] = {}
# Organism 1
workflow_parameters[LOAD_FASTA_ORG1] = {"organism": org1_org_id,
"analysis_id": org1_genome_analysis_id,
"do_update": "true"}

Loraine Gueguen
committed
# workflow_parameters[JBROWSE_ORG1] = {"jbrowse_menu_url": jbrowse_menu_url_org1}
workflow_parameters[JBROWSE_ORG1] = {}
workflow_parameters[LOAD_GFF_ORG1] = {"organism": org1_org_id, "analysis_id": org1_ogs_analysis_id}
workflow_parameters[SYNC_FEATURES_ORG1] = {"organism_id": org1_org_id}
# workflow_parameters[JBROWSE_CONTAINER] = {"organisms": [{"name": org1_full_name, "unique_id": org1_species_folder_name, }, {"name": org2_full_name, "unique_id": org2_species_folder_name}]}
workflow_parameters[JBROWSE_CONTAINER] = {}
# Organism 2
workflow_parameters[LOAD_FASTA_ORG2] = {"organism": org2_org_id,
"analysis_id": org2_genome_analysis_id,
"do_update": "true"}
workflow_parameters[LOAD_GFF_ORG2] = {"organism": org2_org_id, "analysis_id": org2_ogs_analysis_id}

Loraine Gueguen
committed
# workflow_parameters[JRBOWSE_ORG2] = {"jbrowse_menu_url": jbrowse_menu_url_org2}
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
workflow_parameters[JRBOWSE_ORG2] = {}
workflow_parameters[SYNC_FEATURES_ORG2] = {"organism_id": org2_org_id}
# POPULATE + INDEX DATA
workflow_parameters[POPULATE_MAT_VIEWS] = {}
workflow_parameters[INDEX_TRIPAL_DATA] = {}
# Set datamap (mapping of input files in the workflow)
datamap = {}
# Organism 1
datamap[GENOME_FASTA_FILE_ORG1] = {"src": "hda", "id": org1_genome_hda_id}
datamap[GFF_FILE_ORG1] = {"src": "hda", "id": org1_gff_hda_id}
datamap[PROTEINS_FASTA_FILE_ORG1] = {"src": "hda", "id": org1_proteins_hda_id}
# Organism 2
datamap[GENOME_FASTA_FILE_ORG2] = {"src": "hda", "id": org2_genome_hda_id}
datamap[GFF_FILE_ORG2] = {"src": "hda", "id": org2_gff_hda_id}
datamap[PROTEINS_FASTA_FILE_ORG2] = {"src": "hda", "id": org2_proteins_hda_id}
with open(workflow_path, 'r') as ga_in_file:
# Store the decoded json dictionary
workflow_dict = json.load(ga_in_file)
workflow_name = workflow_dict["name"]
# For the Jbrowse tool, we unfortunately have to manually edit the parameters instead of setting them
# as runtime values, using runtime parameters makes the tool throw an internal critical error ("replace not found" error)
# Scratchgmod test: need "http" (or "https"), the hostname (+ port)
jbrowse_menu_url_org1 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org1_genus_species, Genus=org1_genus[0].upper() + org1_genus[1:], species=org1_species, id="{id}")
jbrowse_menu_url_org2 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org2_genus_species, Genus=org2_genus[0].upper() + org2_genus[1:], species=org2_species, id="{id}")

Loraine Gueguen
committed
if "jbrowse_menu_url" not in config.keys():
jbrowse_menu_url_org1 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org1_genus_species, Genus=org1_genus[0].upper() + org1_genus[1:], species=org1_species, id="{id}")
jbrowse_menu_url_org2 = "https://{hostname}/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(hostname=config["hostname"], genus_sp=org2_genus_species, Genus=org2_genus[0].upper() + org2_genus[1:], species=org2_species, id="{id}")

Loraine Gueguen
committed
jbrowse_menu_url_org1 = config["jbrowse_menu_url"] + "/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(genus_sp=org1_genus_species, Genus=org1_genus[0].upper() + org1_genus[1:], species=org1_species, id="{id}")
jbrowse_menu_url_org2 = config["jbrowse_menu_url"] + "/sp/{genus_sp}/feature/{Genus}/{species}/mRNA/{id}".format(genus_sp=org2_genus_species, Genus=org2_genus[0].upper() + org2_genus[1:], species=org2_species, id="{id}")
# show_tool_add_organism = instance.tools.show_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/chado_organism_add_organism/organism_add_organism/2.3.4+galaxy0", io_details=True)
# print(show_tool_add_organism)
# show_jbrowse_tool = instance.tools.show_tool(tool_id="toolshed.g2.bx.psu.edu/repos/iuc/jbrowse/jbrowse/1.16.11+galaxy0", io_details=True)
# print(show_jbrowse_tool)
# show_jbrowse_container_tool = instance.tools.show_tool(tool_id="toolshed.g2.bx.psu.edu/repos/gga/jbrowse_to_container/jbrowse_to_container/0.5.1", io_details=True)
# print(show_jbrowse_container_tool)
# Replace values in the workflow dictionary
workflow_dict["steps"]["7"]["tool_state"] = workflow_dict["steps"]["7"]["tool_state"].replace("__MENU_URL_ORG1__", jbrowse_menu_url_org1)
workflow_dict["steps"]["8"]["tool_state"] = workflow_dict["steps"]["8"]["tool_state"].replace("__MENU_URL_ORG2__", jbrowse_menu_url_org2)
# The UNIQUE_ID is specific to a combination genus_species_strain_sex so every combination should have its unique workflow
# in galaxy --> define a naming method for these workflows
workflow_dict["steps"]["10"]["tool_state"] = workflow_dict["steps"]["10"]["tool_state"].replace("__DISPLAY_NAME_ORG1__", org1_full_name).replace("__UNIQUE_ID_ORG1__", org1_species_folder_name)
workflow_dict["steps"]["10"]["tool_state"] = workflow_dict["steps"]["10"]["tool_state"].replace("__DISPLAY_NAME_ORG2__", org2_full_name).replace("__UNIQUE_ID_ORG2__", org2_species_folder_name)
# Import the workflow in galaxy as a dict
instance.workflows.import_workflow_dict(workflow_dict=workflow_dict)
# Get its attributes
workflow_attributes = instance.workflows.get_workflows(name=workflow_name)
# Then get its ID (required to invoke the workflow)
workflow_id = workflow_attributes[0]["id"] # Index 0 is the most recently imported workflow (the one we want)
show_workflow = instance.workflows.show_workflow(workflow_id=workflow_id)
# Check if the workflow is found
try:
logging.debug("Workflow ID: %s" % workflow_id)
except bioblend.ConnectionError:
logging.warning("Error finding workflow %s" % workflow_name)
# Finally, invoke the workflow alogn with its datamap, parameters and the history in which to invoke it
instance.workflows.invoke_workflow(workflow_id=workflow_id, history_id=history_id, params=workflow_parameters, inputs=datamap, allow_tool_state_corrections=True)
logging.info("Successfully imported and invoked workflow {0}, check the galaxy instance ({1}) for the jobs state".format(workflow_name, instance_url))

Arthur Le Bars
committed

Arthur Le Bars
committed
# Get the instance attribute from the object for future connections
# This is the GalaxyInstance object from bioblend (not the url!)
# instance = run_workflow_for_current_organism.instance
# if "2org" in str(workflow):
# logging.info("Executing workflow %s" % workflow)
# run_workflow_for_current_organism.connect_to_instance()
# run_workflow_for_current_organism.set_get_history()
# # TODO: only do this once per instance (not at each iteration!)
# run_workflow_for_current_organism.install_changesets_revisions_for_individual_tools()
# run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
# run_workflow_for_current_organism.add_organism_ogs_genome_analyses()
# org_id = run_workflow_for_current_organism.get_organism_id()
# genome_analysis_id = run_workflow_for_current_organism.get_genome_analysis_id()
# ogs_analysis_id = run_workflow_for_current_organism.get_ogs_analysis_id()
# instance_attributes = run_workflow_for_current_organism.get_instance_attributes()
# # Import datasets into history and retrieve their hda IDs
# # TODO: can be simplified with direct access to the folder contents via the full path (no loop required)
# hda_ids = run_workflow_for_current_organism.import_datasets_into_history()
# hda_ids_list.append(hda_ids)
# # TODO: Exlcude the workflow invocation from the loop
# # Extract instance url from one, attributes from both in lists ?
# # Source files association (ordered by their IDs in the workflow)
# GENOME_FASTA_FILE_ORG1 = "0"
# GFF_FILE_ORG1 = "1"
# PROTEINS_FASTA_FILE_ORG1 = "2"
# GENOME_FASTA_FILE_ORG2 = "3"
# GFF_FILE_ORG2 = "4"
# PROTEINS_FASTA_FILE_ORG2 = "5"
# LOAD_FASTA_ORG1 = "6"
# JBROWSE_ORG1 = "7"
# JRBOWSE_ORG2 = "8"
# LOAD_GFF_ORG1 = "9"
# JBROWSE_CONTAINER = "10"
# SYNC_FEATURES_ORG1 = "11"
# SYNC_FEATURES_ORG2 = "14"
# POPULATE_MAT_VIEWS = "15"
# INDEX_TRIPAL_DATA = "16"
# workflow_parameters[GENOME_FASTA_FILE_ORG1] = {}
# workflow_parameters[GFF_FILE_ORG1] = {}
# workflow_parameters[PROTEINS_FASTA_FILE_ORG1] = {}
# workflow_parameters[GENOME_FASTA_FILE_ORG2] = {}
# workflow_parameters[GFF_FILE_ORG2] = {}
# workflow_parameters[PROTEINS_FASTA_FILE_ORG2] = {}

Arthur Le Bars
committed
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
# # ORGANISM 1
# workflow_parameters[LOAD_FASTA_ORG1] = {"organism": org_ids[0],
# "analysis_id": genome_analysis_ids[0],
# "do_update": "true"}
# # Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado
# # WARNING: It is safer to never update it and just change the genome/ogs versions in the config
# workflow_parameters[JBROWSE_ORG1] = {}
# workflow_parameters[LOAD_GFF_ORG1] = {"organism": org_ids[0], "analysis_id": ogs_analysis_ids[0]}
# workflow_parameters[SYNC_FEATURES_ORG1] = {"organism_id": org_ids[0]}
# workflow_parameters[JBROWSE_CONTAINER] = {}
# # ORGANISM 2
# workflow_parameters[LOAD_FASTA_ORG2] = {"organism": org_ids[1],
# "analysis_id": genome_analysis_ids[1],
# "do_update": "true"}
# # Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado
# # WARNING: It is safer to never update it and just change the genome/ogs versions in the config
# workflow_parameters[LOAD_GFF_ORG2] = {"organism": org_ids[1], "analysis_id": ogs_analysis_ids[1]}
# workflow_parameters[JRBOWSE_ORG2] = {}
# workflow_parameters[SYNC_FEATURES_ORG2] = {"organism_id": org_ids[1]}
# workflow_parameters[SYNC_GENOME_ANALYSIS_INTO_TRIPAL] = {"analysis_id": ogs_analysis_ids[0]}
# workflow_parameters[SYNC_OGS_ANALYSIS_INTO_TRIPAL] = {"analysis_id": genome_analysis_ids[0]}
# workflow_parameters[SYNC_FEATURES_INTO_TRIPAL] = {"organism_id": org_ids[0]}
# # POPULATE + INDEX DATA
# workflow_parameters[POPULATE_MAT_VIEWS] = {}
# workflow_parameters[INDEX_TRIPAL_DATA] = {}
# # Datamap for input datasets - dataset source (type): ldda (LibraryDatasetDatasetAssociation)
# run_workflow_for_current_organism.datamap = {}
# run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE_ORG1] = {"src": "hda", "id": hda_ids_list[0]["genome_hda_id"]}
# run_workflow_for_current_organism.datamap[GFF_FILE_ORG1] = {"src": "hda", "id": hda_ids_list[0]["gff_hda_id"]}
# run_workflow_for_current_organism.datamap[PROTEINS_FASTA_FILE_ORG1] = {"src": "hda", "id": hda_ids_list[0]["proteins_hda_id"]}
# run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE_ORG2] = {"src": "hda", "id": hda_ids_list[1]["genome_hda_id"]}
# run_workflow_for_current_organism.datamap[GFF_FILE_ORG2] = {"src": "hda", "id": hda_ids_list[1]["gff_hda_id"]}
# run_workflow_for_current_organism.datamap[GFF_FILE_ORG2] = {"src": "hda", "id": hda_ids_list[1]["proteins_hda_id"]}
# logging.info("OK: Workflow invoked")
# # If input workflow is Chado_load_Tripal_synchronize.ga
# if "Chado_load_Tripal_synchronize" in str(workflow):
# logging.info("Executing workflow 'Chado_load_Tripal_synchronize'")
# run_workflow_for_current_organism.connect_to_instance()
# run_workflow_for_current_organism.set_get_history()
# # run_workflow_for_current_organism.get_species_history_id()
# run_workflow_for_current_organism.install_changesets_revisions_for_individual_tools()
# run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
# run_workflow_for_current_organism.add_organism_ogs_genome_analyses()
# run_workflow_for_current_organism.get_organism_id()
# run_workflow_for_current_organism.get_genome_analysis_id()
# run_workflow_for_current_organism.get_ogs_analysis_id()
# # run_workflow_for_current_organism.tripal_synchronize_organism_analyses()
# # Get the attributes of the instance and project data files
# run_workflow_for_current_organism.get_instance_attributes()
# # Import datasets into history and retrieve their hda IDs
# # TODO: can be simplified with direct access to the folder contents via the full path (no loop required)
# hda_ids = run_workflow_for_current_organism.import_datasets_into_history()
# # DEBUG
# # run_workflow_for_current_organism.get_invocation_report(workflow_name="Chado load Tripal synchronize")
# # Explicit workflow parameter names
# GENOME_FASTA_FILE = "0"
# GFF_FILE = "1"
# PROTEINS_FASTA_FILE = "2"
# TRANSCRIPTS_FASTA_FILE = "3"
# LOAD_FASTA_IN_CHADO = "4"
# LOAD_GFF_IN_CHADO = "5"
# SYNC_ORGANISM_INTO_TRIPAL = "6"
# SYNC_GENOME_ANALYSIS_INTO_TRIPAL = "7"
# SYNC_OGS_ANALYSIS_INTO_TRIPAL = "8"
# SYNC_FEATURES_INTO_TRIPAL = "9"
# workflow_parameters = {}
# workflow_parameters[GENOME_FASTA_FILE] = {}
# workflow_parameters[GFF_FILE] = {}
# workflow_parameters[PROTEINS_FASTA_FILE] = {}
# workflow_parameters[TRANSCRIPTS_FASTA_FILE] = {}
# workflow_parameters[LOAD_FASTA_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
# "analysis_id": run_workflow_for_current_organism.genome_analysis_id,
# "do_update": "true"}
# # Change "do_update": "true" to "do_update": "false" in above parameters to prevent appending/updates to the fasta file in chado
# # WARNING: It is safer to never update it and just change the genome/ogs versions in the config
# workflow_parameters[LOAD_GFF_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
# "analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
# workflow_parameters[SYNC_ORGANISM_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
# workflow_parameters[SYNC_GENOME_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.ogs_analysis_id}
# workflow_parameters[SYNC_OGS_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.genome_analysis_id}
# workflow_parameters[SYNC_FEATURES_INTO_TRIPAL] = {"organism_id": run_workflow_for_current_organism.org_id}
# # Datamap for input datasets - dataset source (type): ldda (LibraryDatasetDatasetAssociation)
# run_workflow_for_current_organism.datamap = {}
# run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id": hda_ids["genome_hda_id"]}
# run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda", "id": hda_ids["gff_hda_id"]}
# run_workflow_for_current_organism.datamap[PROTEINS_FASTA_FILE] = {"src": "hda", "id": hda_ids["proteins_hda_id"]}
# run_workflow_for_current_organism.datamap[TRANSCRIPTS_FASTA_FILE] = {"src": "hda", "id": hda_ids["transcripts_hda_id"]}
# # run_workflow_for_current_organism.datamap = {}
# # run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id":
# # run_workflow_for_current_organism.datasets["genome_file"]}
# # run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda",
# # "id": hda_ids["gff_hda_id"]}
# # Ensures galaxy has had time to retrieve datasets
# time.sleep(60)
# # Run the Chado load Tripal sync workflow with the parameters set above
# run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
# workflow_parameters=workflow_parameters,
# datamap=run_workflow_for_current_organism.datamap,
# workflow_name="Chado load Tripal synchronize")
# # Jbrowse creation workflow
# elif "Jbrowse" in str(workflow):
# logging.info("Executing workflow 'Jbrowse'")
# run_workflow_for_current_organism.connect_to_instance()
# run_workflow_for_current_organism.set_get_history()
# run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
# run_workflow_for_current_organism.get_organism_id()
# # Import datasets into history and get their hda IDs
# run_workflow_for_current_organism.import_datasets_into_history()
# hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids() # Note: only call this function AFTER calling "import_datasets_into_history()"
# # Debugging
# # run_workflow_for_current_organism.get_invocation_report(workflow_name="Jbrowse")
# GENOME_FASTA_FILE = "0"
# GFF_FILE = "1"
# ADD_JBROWSE = "2"
# ADD_ORGANISM_TO_JBROWSE = "3"
# workflow_parameters = {}
# workflow_parameters[GENOME_FASTA_FILE] = {}
# workflow_parameters[GFF_FILE] = {}
# workflow_parameters[ADD_JBROWSE] = {}
# workflow_parameters[ADD_ORGANISM_TO_JBROWSE] = {}
# run_workflow_for_current_organism.datamap = {}
# run_workflow_for_current_organism.datamap[GENOME_FASTA_FILE] = {"src": "hda", "id": hda_ids["genome_hda_id"]}
# run_workflow_for_current_organism.datamap[GFF_FILE] = {"src": "hda", "id": hda_ids["gff_hda_id"]}
# # Run the jbrowse creation workflow
# run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
# workflow_parameters=workflow_parameters,
# datamap=run_workflow_for_current_organism.datamap,
# workflow_name="Jbrowse")
# elif "Interpro" in str(workflow):
# logging.info("Executing workflow 'Interproscan")
# run_workflow_for_current_organism.connect_to_instance()
# run_workflow_for_current_organism.set_get_history()
# run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
# # run_workflow_for_current_organism.get_species_history_id()
# # Get the attributes of the instance and project data files
# run_workflow_for_current_organism.get_instance_attributes()
# run_workflow.add_interproscan_analysis()
# run_workflow_for_current_organism.get_interpro_analysis_id()
# # Import datasets into history and retrieve their hda IDs
# run_workflow_for_current_organism.import_datasets_into_history()
# hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids()
# INTERPRO_FILE = "0"
# LOAD_INTERPRO_IN_CHADO = "1"
# SYNC_INTERPRO_ANALYSIS_INTO_TRIPAL = "2"
# SYNC_FEATURES_INTO_TRIPAL = "3"
# POPULATE_MAT_VIEWS = "4"
# INDEX_TRIPAL_DATA = "5"
# workflow_parameters = {}
# workflow_parameters[INTERPRO_FILE] = {}
# workflow_parameters[LOAD_INTERPRO_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
# "analysis_id": run_workflow_for_current_organism.interpro_analysis_id}
# workflow_parameters[SYNC_INTERPRO_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.interpro_analysis_id}
# run_workflow_for_current_organism.datamap = {}
# run_workflow_for_current_organism.datamap[INTERPRO_FILE] = {"src": "hda", "id": run_workflow_for_current_organism.hda_ids["interproscan_hda_id"]}
# # Run Interproscan workflow
# run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
# workflow_parameters=workflow_parameters,
# datamap=run_workflow_for_current_organism.datamap,
# workflow_name="Interproscan")
# elif "Blast" in str(workflow):
# logging.info("Executing workflow 'Blast_Diamond")
# run_workflow_for_current_organism.connect_to_instance()
# run_workflow_for_current_organism.set_get_history()
# run_workflow_for_current_organism.install_changesets_revisions_from_workflow(workflow_path=workflow)
# # run_workflow_for_current_organism.get_species_history_id()
# # Get the attributes of the instance and project data files
# run_workflow_for_current_organism.get_instance_attributes()
# run_workflow_for_current_organism.add_blastp_diamond_analysis()
# run_workflow_for_current_organism.get_blastp_diamond_analysis_id()
# # Import datasets into history and retrieve their hda IDs
# run_workflow_for_current_organism.import_datasets_into_history()
# hda_ids = run_workflow_for_current_organism.get_datasets_hda_ids()
# BLAST_FILE = "0"
# LOAD_BLAST_IN_CHADO = "1"
# SYNC_BLAST_ANALYSIS_INTO_TRIPAL = "2"
# SYNC_FEATURES_INTO_TRIPAL = "3"
# POPULATE_MAT_VIEWS = "4"
# INDEX_TRIPAL_DATA = "5"
# workflow_parameters = {}
# workflow_parameters[INTERPRO_FILE] = {}
# workflow_parameters[LOAD_BLAST_IN_CHADO] = {"organism": run_workflow_for_current_organism.org_id,
# "analysis_id": run_workflow_for_current_organism.blast_diamond_analysis_id}
# workflow_parameters[SYNC_BLAST_ANALYSIS_INTO_TRIPAL] = {"analysis_id": run_workflow_for_current_organism.blast_diamond_analysis_id}
# run_workflow_for_current_organism.datamap = {}
# run_workflow_for_current_organism.datamap[INTERPRO_FILE] = {"src": "hda", "id": hda_ids["interproscan_hda_id"]}
# # Run Interproscan workflow
# run_workflow_for_current_organism.run_workflow(workflow_path=workflow,
# workflow_parameters=workflow_parameters,
# datamap=run_workflow_for_current_organism.datamap,
# workflow_name="Interproscan")